Page 151 - DMTH202_BASIC_MATHEMATICS_II
P. 151
Basic Mathematics-II
Notes Thus (2) becomes
-1 -1
-1
x e tan y e tan y (tan y -1 ) c
-1
-1
or x (tan y – 1) ce tan y ,
which is the required solution.
Example:
2
Solve x (1–x ) dy + (2x y–y-ax ) dx = 0.
2
3
Solution:
The given equation is equivalent to
dy 2x 2 1 ax 2
y . ……(1)
dx x (1 x 2 ) 1 x 2
2x 2 1 ax 2
Here P = 2 , Q 2 .
x (1 x ) 1 x
2 2
2x 1 1 2x
2 dx dx
pdx (1x x ) ( x x 2 1)
F
I . . e e e
1 2x 2
dx
( x x 1) (x 1)
e
1 1 1
dx
x 2 ( x 1) 2 ( x 1)
e
1
log
x x 2 1 1
e .
x x 2 1
Thus the solution of (1) is
1 ax 2 1
. y 2 . dx c
x x 2 1 1 x x x 2 1
x
c
a 3 dx
(1 x 2 ) 2
a dt 2
3 , (t x 1)
c
2 t 2
a 1
c
t
. 2( ) 2
2
146 LOVELY PROFESSIONAL UNIVERSITY