Page 155 - DMTH202_BASIC_MATHEMATICS_II
P. 155

Basic Mathematics-II




                    Notes
                                            x
                                                dx    1 log  1 (   x )    1
                                                               2
                                              2
                                          (
                                         2 1 x )                      2
                                            
                                   I.F.   e        e   4        1 (    x )  4 .
                                    The solution is
                                                   x
                                              F
                                             I
                                                      I
                                                       F
                                          z  . ( . .)    . ( . .) dx   c
                                                   2
                                                   1            1
                                                              
                                                2
                                   or     z .  1 (   x )  4     x  1 (  x )  4  dx   c
                                                             2
                                                       2
                                                      1
                                                     
                                             1
                                                   2
                                              1 (     x )  4  . ( 2x) dx   c
                                             4
                                                     3
                                                   2 4
                                             1 1 x )
                                               (
                                                 
                                                      c
                                             4     3 
                                                  
                                                   4 
                                                              1
                                              1     2
                                                             2 4
                                   or     z    1 (   x )   c  1 (   x )
                                              3
                                                                1
                                                1     2
                                                              2 4
                                   or      y    1 (  x )   c  1 (  x )
                                                3
                                   Which is the required solution.
                                          Example:
                                               2 dy
                                   Solve  xy ( 1 xy )    1.
                                            
                                                  dx
                                   Solution:
                                   The given equation can be written as
                                          dx      2 3
                                               y   x y  .
                                          dy
                                              2
                                   Dividing by x , we have
                                                               3
                                                 x  2 dx    y x  1    y .                             …..(1)
                                                    dy
                                           -1
                                   Putting x  = z
                                           x  2 dx    dz
                                              dy   dy


                                   or     x   2 dx    dz .
                                             dy   dy




          150                               LOVELY PROFESSIONAL UNIVERSITY
   150   151   152   153   154   155   156   157   158   159   160