Page 157 - DMTH202_BASIC_MATHEMATICS_II
P. 157
Basic Mathematics-II
Notes (1) becomes
dz 3
2z. x , which is linear in z.
dx
I.F. 2 2xdx e x 2 .
The solution is
2 2
3
x
ze x x .e dx c
2
2
x
x .e .xdx c
1 t 2
te dt c (t x )
2
1 t
e t 1 c
2
2 2
2
ze x 1 x x 1 c
e
2
1 2 x 2
or z x 1 ce
2
1 2 x 2
tan y x 1 ce
2
which is the required solution.
Example:
dy y 2
Solve y .
dx x
Solution:
2
Dividing throughout by y , we have
1 dy 1 . 1 1
y 2 dx x y …..(1)
1
Putting z
y
1 dy dz
2 .
y dx dx
Equation (1) becomes
dz 1
z 1 …..(2)
dx x
which is linear in z.
152 LOVELY PROFESSIONAL UNIVERSITY