Page 158 - DMTH202_BASIC_MATHEMATICS_II
P. 158

Unit 11: Linear Differential Equations of First Order




                                                                                                Notes
                         1
                         dx          1
                 I . .   e  x    e  log x    .
                   F
                                       x
            Solution of (2) is
                   1      1
                   . z    1 .  dx   c
                   x      x
                  z
          or          log x   c
                  x

                   1
                           x
          or           c  log ,
                  xy
          which is the required solution.


                 Example:

                 dy
                          3
          Solve   x    y   xy .                                                 …..(1)
                  dx
          Solution:
                               3
          Dividing throughout by y , we have

                  xy   3 dy    y   2    x
                      dx

          or      y   3 dy    1  y  2    1.                                   …..(2)
                     dx  x

          Putting y  = z
                  -2
                  2y  3 dy    dz
                       dx  dx


          or      y   3 dy     1 dz  .
                     dx   2 dx
           Equation (2) becomes

                   1 dz  1
                        z  1
                   2 dx  x

                   dz  2
          or           z   2.                                                  …..(3)
                  dx   x
          which is linear in z.

                   2
                   dx   2log x  1
            . .I F   e  x    e    2  .
                             x





                                           LOVELY PROFESSIONAL UNIVERSITY                                   153
   153   154   155   156   157   158   159   160   161   162   163