Page 161 - DMTH202_BASIC_MATHEMATICS_II
P. 161

Basic Mathematics-II




                    Notes
                                        dy   x y  cosx
                                              
                                   7.      
                                               
                                        dx    1 sin x
                                                dy  y    2
                                   8.  For  x > 0,       y x sin x  given that y = 1 when x = 
                                                dx   x
                                             ~
                                                3
                                             2
                                   9.  2xy = y  2x  where y(1) = 2
                                             dy
                                                  y
                                   10.  cosx     4 sin x   4 y  sec x
                                             dx
                                             dy                 2
                                                            y
                                   11.  tan y     tan x   cos cos x
                                             dx

                                        dy               3      3
                                              
                                                   
                                                       
                                                             
                                   12.       1 x (y x ) x  (y x )
                                        dx
                                               2  dy   2      2        3
                                         y
                                   13.  2 cosy           sin y   (x  1)
                                                dx   x  1
                                         y   dy    x
                                                 
                                   14.  e      1   e
                                            dx  
                                        dy      y
                                   15.  dx    x   xy


                                   Answers: Self  Assessment

                                   1.  relationship                      2.   linear

                                   3.  multiply                          4.   Leibnitz’s linear equation

                                   5.   ye   Pdx    Qe  Pdx  dx  , c  6.  solutions

                                   7.  linearly                          8.   consistent

                                   9.  Bernoulli’s  equation             10.  add

                                                                                   dy
                                                                                 y
                                   11.  decreases                        12.  f  ' ( )    Pf    y   Q
                                                                                   dx
                                                                                    dy   dz
                                                                                 y
                                   13.  constants                        14.  f  ' ( ) .  
                                                                                    dx   dx








          156                               LOVELY PROFESSIONAL UNIVERSITY
   156   157   158   159   160   161   162   163   164   165   166