Page 156 - DMTH202_BASIC_MATHEMATICS_II
P. 156

Unit 11: Linear Differential Equations of First Order




          Equation (1) becomes                                                                  Notes
                   dz       3
                       yz y
                          
                   dy
                  dz        3
          or          yz   y  which is linear in z.
                  dy

                  y dy  y  2
           I.F.   e    e  2 .
           The solution is

                    y  2   3  y 2
                  Z.e  2    y .e  2 dy   c

                              2
                            y .e y 2  2 .y dy   c

                                          2
                               t        y 
                                  
                            2t.e dt c, t   
                                     
                                        2  
                                t
                              
                              t
                            2 .e   e t    c
                                   
                           y 2     y 2  y 2  
                         Ze  2    2e  2       c
                                          1 
                                       2  
             1      y 2      y 2  2
                       1 
                2      ce
             x      2  
          which is the required solution.


                 Example:

                dy     2    3  2
          Solve     xsin y   x cos y .
                dx
          Solution:
                       2
          Dividing by cos y, we have
                                y
                       dy  2 sin cosy
                            x
                    2
                  sec y .              x  3
                                 2
                       dx     cos y
                       dy           3
                    2
                               y
          or      sec y    2tan .x   x .                                        …..(1)
                       dx
          Putting tan y = z
                       dy  dz
                    2
                 sec y     .
                       dx  dx



                                           LOVELY PROFESSIONAL UNIVERSITY                                   151
   151   152   153   154   155   156   157   158   159   160   161