Page 156 - DMTH202_BASIC_MATHEMATICS_II
P. 156
Unit 11: Linear Differential Equations of First Order
Equation (1) becomes Notes
dz 3
yz y
dy
dz 3
or yz y which is linear in z.
dy
y dy y 2
I.F. e e 2 .
The solution is
y 2 3 y 2
Z.e 2 y .e 2 dy c
2
y .e y 2 2 .y dy c
2
t y
2t.e dt c, t
2
t
t
2 .e e t c
y 2 y 2 y 2
Ze 2 2e 2 c
1
2
1 y 2 y 2 2
1
2 ce
x 2
which is the required solution.
Example:
dy 2 3 2
Solve xsin y x cos y .
dx
Solution:
2
Dividing by cos y, we have
y
dy 2 sin cosy
x
2
sec y . x 3
2
dx cos y
dy 3
2
y
or sec y 2tan .x x . …..(1)
dx
Putting tan y = z
dy dz
2
sec y .
dx dx
LOVELY PROFESSIONAL UNIVERSITY 151