Page 31 - DMTH202_BASIC_MATHEMATICS_II
P. 31

Basic Mathematics-II




                    Notes
                                            1          1  1  1   1   1  
                                   Hence    2  dx        .    .      dx
                                          ( x x   1)    x  2 (x   1)  2 (x  1) 

                                                 1          1
                                           log x   log(x   1)  log(x   1)
                                                 2          2
                                           log x x   1 x   1
                                           log(x x  2   1)


                                                              x
                                          Example: Evaluate       dx
                                                          (x  1)(x  1)
                                   Solution:

                                           x          A      B      C
                                   Let          dx                 2
                                       (x   1)(x   1)  (x   1)  (x   2)  (x  2)
                                     A (x   2) 2  (x   1)(x   2)  (x   1)
                                                B
                                                            C
                                    x
                                   x   A (x  2   4x   4)  (x  2   3x   2) 1(x   1)
                                                  B
                                                             
                                   comparing the coefficients of x both the sides
                                   A B   0                                                          ....(1)
                                     
                                   4A   3B   2C   1                                                  ....(2)
                                         
                                   4A   2B C   0                                                      ....(3)
                                   on solving equation (1), (2), (3), we get
                                   A = – 1, B =1, C = 1

                                              dx          1        1
                                   Hence          2      dx     2 dx
                                          (x  1)(x   2)  x  1  (x   2)

                                                                1
                                            log(x   1) log(x   2) 
                                                   
                                                              (x   2)
                                              (x   2)  1
                                            log         Ans .
                                              (x   1)  (x   2)

                                                               x
                                          Example: Evaluate        dx
                                                                2
                                                          (x  1)(x   4)
                                   Solution:

                                           x        A   Bx C
                                                          
                                   Let      2           2
                                      (x   1)(x   4)  x  1  x   4
                                           2
                                   Or  x   A (x   4) (Bx C )(x  1)
                                                
                                                    
                                         4
                                                 2
                                             
                                   x   A (x   4) B (x   x ) (x   1)
                                                     C


          26                                LOVELY PROFESSIONAL UNIVERSITY
   26   27   28   29   30   31   32   33   34   35   36