Page 65 - DMTH202_BASIC_MATHEMATICS_II
P. 65
Basic Mathematics-II
Notes
1 A B
(x 1)(x 2) x 1 x 2
1 A (x 2) B (x 1)
Putting x = – 1, we get A = 1
Putting x = – 2, we get B = – 1
2 dx 2 1 1
I 1 (x 1)(x 2) 1 x 1 x dx
2
log|x 1| log|x 2| 2
1
3 2 9
(log 3 log 4) (log 2 log 3) log log log
4 3 8
3 dx
(ii) I x 2 (x 1)
0
1 A B C
x 2 (x 1) x x 2 x 1
1 Ax (a 1) B (x 1) Cx 2
Putting x = – 1, we get C = 1
Putting x = 1, we get A = – 1
3 dx 3 1 1 1
I 1 x 2 (x 1) 1 x 2 x 1 dx
x
3
1
x
log| | log|x 1|
x 0
1 1
log 3 log 4 log|1| log|2|
3 1
1 2 2
log 3 log 4 1 log 2 log
3 3 3
Example: Evaluate the following integrals:
/4
x
(i) 0 sin2 cos3xdx
/4
3
(ii) 0 cos xdx
/4
(iii) 0 1 sin 2x dx
/2
(iv) 0 1 cosxdx
sin x
(v) 0 sin x cosx dx
Solution:
/4
x
(i) I sin2 cos3xdx
0
60 LOVELY PROFESSIONAL UNIVERSITY