Page 64 - DMTH202_BASIC_MATHEMATICS_II
P. 64
Unit 4: Definite Integral
2 dx 2 dx Notes
(iii) 0
2
x
0 4 x x 2 x 4
2 dx 2 dx
0 2 2 0 2 2
1 17 17 1
x x
2 2 2 2
2
17 1
1 x
log 2 2
17 17 1
2 x
2 2 2 0
17 1 17 1
x
1 2
log 2 2 log 2
17 17 1 17 1
2 x 2 2 2
17 3 17 1
1 2 2 2 2
log
17 17 3 17 1
2 2 2 2
1 17 3 17 1 1 12 5 17
log log
17 17 3 17 1 17 4
1 1
2
2
(iv) x x dx [x ] x dx
0 0
1 1 2 1 2 1 1 2 1 2
x dx x dx
2
2
0 2 0 2
1 2 1
1
1 1
x x
2
2 x x 2 sin 1 2
2 2 2
0 0
2x 1 1 1 1
1
x x 2 sin (2 x 1)
4 0 8 0
1 1 1 1
1
1
0 sin (1) 0 sin ( 1)– sin 1 0
4 8 4 8
2 1
1
sin (1)
8 4 2 8
Example: Evaluate the following integrals:
2 dx
(i) (x 1)(x 2)
1
3 dx
(ii) x 2 (x 1)
0
Solution:
2 dx
(i) 1 (x 1)(x 2)
LOVELY PROFESSIONAL UNIVERSITY 59