Page 59 - DMTH202_BASIC_MATHEMATICS_II
P. 59

Basic Mathematics-II




                    Notes              f(a + h) = sin(a+h)
                                       f(a + h) = sin(a+2h)
                                       f(a + 3h) = sin) a + 3h)
                                                            h
                                         ( f a n  1 ) sin(a n   1 )
                                           
                                                       
                                                 
                                               h
                                             b
                                                                 
                                                                                             
                                                                           h
                                                                   )
                                       Now,    f ( ) dxlinh | (0)   ( f a h   ( f a   2 )   ( f a   3 ) ....   ( f a n   1 )|
                                                x
                                                         f
                                                 
                                                                                                  h
                                                                                   h
                                                                                     
                                             a
                                          b
                                                                                         
                                                                             
                                                                                       
                                                                           h
                                                     h
                                                                
                                                                                     h
                                           sinxdx   lim [sin a   sin(a h ) sin(a   2 ) sin(a   3 ) ... sin(a   (n a ) )
                                                                                                  
                                                                   
                                                                                                     h
                                          a
                                                    n   1       nh 
                                             sin a     h  sin   
                                                
                                                    2       2 
                                          lim h
                                          h 0           h 
                                                     sin  
                                                         2 
                                                h        nh h     b a 
                                                      
                                                                    
                                                           
                                          lim h   sin a      sin   
                                         h 0     h      2       2 
                                             sin  
                                                  2 
                                                2         b a h       b a 
                                                       
                                                           
                                                              
                                                                      
                                          lim h   2sin a       sin   
                                                
                                                 h 
                                         h   0 sin        2        2 
                                                  2 
                                                           
                                                   
                                                
                                               2a b a     b a 
                                          2sin      sin   
                                                2        2 
                                                       
                                               
                                               b a     b a 
                                          2sin    sin       cos   cosb
                                               2     2 
                                         /4
                                   2.     cosxdx
                                        0
                                       i.   f(x) = cos x,  = 0, b =/4, nh = b – a /4
                                       ii.  f() = f(0) = cos 0
                                       iii.  f(a + h) = f(h) = cos h
                                       iv.  f(a+2h) = f(2h) = cos = 2h
                                       v.   f(a+3h) = f(3h) = cos 3 h
                                         ( f a n   1 )   ( f n ah   cos(n a )h
                                           
                                                                
                                                      
                                               h
                                                         )
                                             b
                                                                                 h
                                                                )
                                                                                               h
                                                      f
                                                x
                                                        a
                                                                        h
                                       Now,    f ( ) lim ( )   ( f a h   ( f a  2 )  ( f a  3 ) ....  ( f a n  1 )|
                                                 
                                                              
                                                                                          
                                                                                  
                                             a
                                          b
                                                     h
                                                       f
                                                                                  h
                                                                   h
                                                             h
                                           cosxdx   lim [ (0)   f  ( )   f (3 ) .........   ( f n   1) ]
                                                                     
                                          a
                                                              n  1     nh 
                                                          
                                                       cos 0        sin   
                                                              2     2 
                                                   lim h
                                                                  h 
                                                                
                                                   h 0       sin  
                                                                  2 
                                                         h      nh h     nh
                                                                   
                                                   lim h    cos    sin
                                                         
                                                           h 
                                                   h 0 sin     2      2
                                                           2 
          54                                LOVELY PROFESSIONAL UNIVERSITY
   54   55   56   57   58   59   60   61   62   63   64