Page 56 - DMTH202_BASIC_MATHEMATICS_II
P. 56
Unit 4: Definite Integral
1 Notes
2x
2. e dx
1
x
f ( ) ex 2x ,a 1,b 1andnh b a 1 ( 1) 2
f ( ) f ( 1) e 2
a
)
)
( f a h f ( 1 h e 2( 1 h ) e 2 .e 2h
h
h
h
( f a 2 ) f ( 1 2 ) e 2( 1 2 ) e 2 4h e 2 .e 4h
h
h
h
( f a 3 ) f ( 1 3 ) e 2( 1 3 ) e 2 6h e 2 .e 6h
:
:
h
h
h
( f a n 1 ) f ( 1 n 1 ) e 2( 1 n 1 ) e 2 2(n 1) h e 2 .e ( 2 n 1)h
b
h
h
a
x
h
f
h
Now, f ( )dx lim [ ( ) ( f a h ( f a 2 ) ( f a 3 ) ( f a n 1 )]
)
a h 0
1
2x
h
e dx lim [ ( 1) f ( 1 ) h f ( 1 2 ) f ( 1 3 ) f ( 1 n 1 )]
h
h
h
f
h 0
1
4h
6h
2h
2
2
h
lim [e e 2 .e 2.e 2e e e 2(n 1)h ]
e
e
h 0
(e 2nh 1) h
4
lim h e 2 lim .e 2(e 1) [ nh 2]
2h
2h
h 0 e 1 h 0 3 1
2h 1 1 1
4
2
4
lim . e 2 (e 1) e 2 (e 1) (e e 2 )
2h
h 0 e 1 2 2 2
3 x
3. e dx
1
x
f ( ) e x ,a 1,b 3 and nh b a 3 1 2
a
f ( ) f (1) e 1
( f a h f (1 h e (1 h ) e 1 .e h
)
)
h
h
( f a 2 ) f (1 2 ) e (1 2 ) e 1 2h e 1 .e 2h
h
h
h
( f a 3 ) f (1 3 ) e 1(1 3 ) e 1 .e 3h
h
:
:
h
( f a n 1 ) f (1 n 1 ) e 1(1 (n 1) ) e 1 (n 1) h e 1 .e (n 1)h
h
h
b
h
Now, f ( )dx lim [ ( ) f (a h ) f (a 2 ) f (a 3 ) f (a n 1 )]
h
h
f
h
a
x
a h 0
h
f
lim [ (1) f (1 h f (1 2 ) (1 3 ) f (1 (n 1) )]
)
h
h
h
h 0
1
1
1
1
1
h
lim [e e e h e e 2h e e 3h e e (n 1)h ]
h 0
e 1 (e nh 1) h
lim h lim e 1 (e nh 1)
h 0 e h 1 h 0 e h 1
h 1 2
lim e (e 1)
h 0 e h 1
1
1
3
2
e 1(e 1) e e e .e 3
LOVELY PROFESSIONAL UNIVERSITY 51