Page 51 - DMTH202_BASIC_MATHEMATICS_II
P. 51
Basic Mathematics-II
Notes
2
1. (2x 3)dx
1
2
f ( ) 2x 3,a 1,b and nh b a 2 1 1
x
a
f ( ) f (1) 5
( f a h f (1 h ) 2(1 h ) 3 5 2h
)
h
( f a 2 ) f (1 2 ) 2(1 2 ) 3 5 2.2h
h
h
h
h
h
( f a 3 ) f (1 3 ) 2(1 3 ) 3 5 3.2h
:
:
h
h
( f a n 1 ) f (1 n 1 ) 2(1 n 1 ) 3 5 n 1.2h
h
b
h
h
x
a
)
Now , f ( )dx lim h [ ( ) ( f a h ( f a 2 ) ( f a 3 ) ( f a n 1 )]
f
h
a h 0
2
)
f
h
h
h
(2x 3)dx lim h [ (1) f (1 h ( f a 2 ) f (1 3 ) f (1 n 1 )
h 0
1
h
h
limh [5 5 2 .h 5 2.2h 5 3.2h 5 n 12 ]
h 0
h
lim h [5n 2 (1 2 3 (n 1)]
h 0
( n n 1)
lim h 5n 2h
h 0 2
lim h [5n nh (n 1)] lim [5nh nh (nh h )]
h 0 h 0
lim h [5 (1 h )] [ nh 1]
h 0
5 1 6
1
2. (x 3)dx
1
1
x
f ( ) x 3,a 1,b and nh b a 1 1 2
a
f ( ) f ( 1) 2
3
( f a h f ( 1 h 1 h 2 h
)
)
h
3
h
( f a 2 ) f ( 1 2 ) 1 2h 2 2h
h
( f a 3 ) f ( 1 3 ) 1 3h 2 3h
3
h
:
:
h
h
3
( f a n 1 ) f ( 1 n 1 ) 1 n 1h 2 (n 1)h
b
h
Now , f ( )dx lim h [ ( ) ( f a h ( f a 2 ) ( f a 3 ) ( f a n 1 )]
x
a
h
f
)
h
a h 0
1
h
h
f
h
(x 3)dx limh [ ( 1) f ( 1 h f ( 1 2 ) ( 1 3 ) f ( 1 n 1 )]
)
1 h 0
h
limh [2 2 h 2 2h 2 3h 2 (n 1) ]
h 0
h
lim h [2n h 2h 3h (n 1) ]
h 0
46 LOVELY PROFESSIONAL UNIVERSITY