Page 54 - DMTH202_BASIC_MATHEMATICS_II
P. 54
Unit 4: Definite Integral
2
h
h
h
h
( f a n 1 ) f (2 n 1 ) 2(2 n 1 ) 3(2 n 1 ) 1 Notes
2
2(4 2(n 1)h (n 1) h 2 ) 6 3(n 1)h 1
2
15 (n 1).11h (n 1) .2h 2
b
)
a
h
x
h
h
f
Now, f ( )dx lim [ ( ) ( f a h ( f a 2 ) ( f a 3 )
a h 0
( f a n 1 )]
h
4
2
(2x 3x 1)dx
2
h
lim [ (2) f (2 h f (2 2 ) f (2 3 ) f (2 n 1 )]
h
f
)
h
h
h 0
2
2
2
2
h
lim [15 15 11h 2h 15 2.11h 2 .2h 15 3.11h 3 .2h 2
h 0
15 (n 1)11h (n 1) .2h 2 ]
2
2
2
2
2
2
h
h
h
lim [15n 11 (1 2 3 (n 1)) 2 (1 2 3 (n 1) )]
h 0
( n n 1) 2 (n n 1)(2n 1)
lim h 15n 11h 2h
h 0 2 6
)
11 nh (nh h )(2nh h
lim h 15nh nh (nh h
)
h 0 2 3
)
2(2 h )(4 h 16 172
lim 30 11(2 h 30 22
)
h 0 3 3 3
Example:
2
3
Evaluate as limit of sums x 1dx
1
Solution:
2
3
x 1dx
1
3
f ( ) x 1,a 1,b 2andnh b a 2 1 1
x
f ( ) f (1) 2
a
2
3
3
2
)
)
( f a h f (1 h ) (1 h 1 1 3h 3h h 1 2 3h 3h h 3
3
2
3
3
2
h
h
( f a 2 ) f (1 2 ) (1 2 ) 1 1 2.3h 2 .3h 2 h 1
h
2
2
3
2 2.3h 2 .3h 2 h 3
2
2
2
3
3
h
h
h
( f a 3 ) f (1 3 ) (1 3 ) 1 1 3.3h 3 .3h 3 .h 1
2
3
2
2 3.3h 3 .3h 3 h 3
:
:
3
3
2
2
3
h
h
h
( f a n 1 ) f (1 n 1 ) (1 n 1 ) 1 1 (n 1)3h (n 1) .3h (n 1) h 1
3
2
2
2 (n 1).3h (n 1) .3h (n 1) .h 3
b
x
f
h
h
a
Now, f ( )dx lim [ ( ) ( f a h ( f a 2 ) ( f a 3 ) ( f a n 1 )]
h
)
h
a h 0
LOVELY PROFESSIONAL UNIVERSITY 49