Page 58 - DMTH202_BASIC_MATHEMATICS_II
P. 58

Unit 4: Definite Integral




                    4                                                                           Notes
                      x
                     2 dx  lim [ (2)   f (2 h   f (2 2 )   f  (2 3 )    f (2 n  1 )]
                                       
                                               
                                         )
                                                 h
                                                                        h
                                                                   
                                                          h
                             h
                               f
                                                       
                    2     h  0
                                             3h
                                   h
                            h
                               
                         lim [4 4.2   4.2  2h    4.2    4.2 (n 1)h ]
                         h 0
                                nh
                             4(2   1)     h
                                                 nh
                         lim h       lim    4(2   1)
                                           h
                                h
                         h 0  2   1  h  0 2   1
                               h
                                     2
                         lim h   4 (2   1)
                              h
                         h 0 2  1
                                                 x
                  1                            a  1     
                    4(3)                    lim     log a 
                 log 2                       h 0  x     
                  12
               
                 log 2
                2
                  x
          2.     5 x
                1
                    x
                x
               f ( ) 5 ,a   1,b   2 and nh b a   2 ( 1) 3
                                                  
                                     
                                             
                  
                                        
                                               
                     a
                   f ( )   f  ( 1)   5  1
                          
                                  
                                      1
                                      
                     )
                ( f a h   f  ( 1 h   e   1 h    5 .5 h
                         
                             )
                           
                  
                                         1
                                         
                                    
                ( f a   2 )   f  ( 1 2 )   5  1 2h    5 .5  2h
                            
                     h
                              h
                          
                                    
                                         1 3h
                                         
                              h
                     h
                          
                ( f a   3 )   f ( 1 3 )   5  1 3h    5 5
                            
                    :
                    :
                                               
                                                1
                                        
                         
                                     
                       h
                ( f a n  1 ) f ( 1 n   1 ) 5   1 (n 1)h    5 5 (n 1)h
                                   h
                              
                  
                            
                     b
                                           )
                                   a
                                 f
                       x
                                                                     
                                                           h
                                                                         h
                                         
                               h
               Now,    f  ( )dx   lim [ ( )   ( f a h   ( f a   2 )   ( f a   3 )   ( f a n  1 )]
                                                   h
                     a       h 0
                    2
                      x
                                       
                                         
                                                             h
                                                           
                                                         
                                                                      
                                                                             h
                             h
                                                                        
                                               
                                 
                                           )
                     5 dx  lim [ ( 1)   f ( 1 h   f ( 1 2 )   f ( 1 3 )    f ( 1 n   1 )]
                                                  
                                                    h
                               f
                           h  0
                     1
                                               1
                                           2h
                                                 3h
                                                        1
                               1
                                   1 h
                                         1
                                                        
                                        
                                   
                               
                            h
                         lim [5  5 5   5 .5   5 .5    5 5 (n  1)h  ]
                         h 0
                                 nh
                               1
                              
                             5 (5   1)      h
                                                 
                                                    3
                                                 1
                         lim h        lim     5 (5  1)
                                h
                                            h
                         h 0  5   1   h 0 5   1
                               h
                                     2
                         lim h   4 (2   1)
                              h
                         h 0 2  1
                           1     1   124
                               2
                             5    
                         log 5   5   5log 5
                 Example:
          Evaluate the following definite integrals as limit of sums:
               b                             /4                          2  2
          1.     sinxdx               2.     cosxdx               3.    sin xdx
               a                            0                             6
          Solution:
               b
          1.    sinxdx
               a
               f(x) = sin x and nh = b – a
               f(a) = sina
                                           LOVELY PROFESSIONAL UNIVERSITY                                   53
   53   54   55   56   57   58   59   60   61   62   63