Page 57 - DMTH202_BASIC_MATHEMATICS_II
P. 57

Basic Mathematics-II




                    Notes
                                        1
                                          
                                   4.    e 2 3x  dx
                                        0
                                                  
                                            f  ( )   e 2 3x  ,a   0,b   1 and nh b a   1 0   1
                                             x
                                                                      
                                                                           
                                                                   
                                             a
                                            f  ( )   f (0)   e 2
                                                      
                                           
                                         ( f a h   f  ( )   e 2 3h    e 2 .e  3h
                                             )
                                                 h
                                                        
                                                   h
                                             h
                                         ( f a   2 )   f  (2 )   e 2 3h    e  2 .e  3h
                                                        
                                             h
                                                   h
                                         ( f a   3 )   f  (3 )   e  2 9h    e 2 .e   9h
                                            :
                                            :
                                                               
                                                           h
                                                            
                                                 
                                                h
                                                     
                                           
                                         ( f a n   1 ) f  (1 n  1 ) e 2 3(n 1)h    e 2 .e   ( 3 n 1)h
                                             b
                                                        h
                                                          f
                                        Now,    f  ( )dx  lim [ ( ) f  (a h  ) f  (a   2 ) f  (a   3 )    f  (a n   h
                                                                           h
                                                                                    h
                                                                                                  1 )]
                                                x
                                                           a
                                                                     
                                                                             
                                                             
                                                                                             
                                                                 
                                                     h  0
                                             a
                                        1
                                          
                                                    f
                                        e 2 3x dx  lim [ (0)   f ( )   f (2 )   f  (3 )    ( f a n  1 )]
                                                                                     h
                                                  h
                                                                       h
                                                                                
                                                           h
                                                                 h
                                        0       h  0
                                                                             2
                                                   2
                                              lim [e   e 2 .e   3h    e  2 .e  6h    e 2 .e  9h     e   e  3(n 1)h ]
                                                 h
                                              h 0
                                                  e 2 (e  3nh    1)  h
                                             lim h          lim     e   2 (e  3nh    1)
                                             h 0  e  3nh    1  h 0 e   3h   1
                                                    3h    1 
                                                                3
                                                                
                                                                                 
                                             lim h         e 2(e  1)        [ nh   1]
                                             h 0  e  3h    1    3 
                                              1           1       1   1 
                                                   3
                                                             1 2
                                                                     2
                                                            
                                                   
                                              e 2 (e  1)  (e e  )     e   
                                              3           3       3    e 
                                          Example:
                                   Evaluate the following definite integrals as limit of sums:
                                        4                                     2
                                                                                x
                                          x
                                   1.    2 x                            2.     5 x
                                        2                                      1
                                   Solution:
                                        4
                                   1.     2 x
                                        2
                                                  x
                                            f  ( ) 2 ,a   2,b   4 and nh b a   4 2   2
                                               
                                             x
                                                                         
                                                                    
                                                                 
                                                       2
                                             a
                                            f  ( )   f  (2)   e   4
                                                                h
                                                              2
                                                         
                                                   
                                           
                                         ( f a h   f  (2 h   e  2 3h    2 .2   4.2  h
                                             )
                                                     )
                                                                2
                                                           
                                             h
                                                        
                                                      h
                                                    
                                         ( f a   2 )   f  (2 2 ) 2 2 2h    2 .2  2h    4.2  2h
                                                           
                                             h
                                                      h
                                                        
                                         ( f a   3 )   f  (2 3 ) 2  2 3h    22.2  3h    4.2 3h
                                                   
                                            :
                                            :
                                                                      2
                                                               
                                                            
                                           
                                                      
                                                h
                                         ( f a n   1 ) f  (2 n   1 ) e  2 (n  1)h    2 .2 (n 1)h    4.2  (n 1)h
                                                           h
                                                 
                                             b
                                                          f
                                        Now,    f  ( )dx  lim [ ( ) f  (a h  ) f  (a   2 ) f  (a   3 )    f  (a n   1 )]
                                                                                    h
                                                                                                  h
                                                x
                                                                           h
                                                           a
                                                        h
                                                             
                                                                                             
                                                                 
                                                                     
                                                                             
                                                     h  0
                                             a
          52                                LOVELY PROFESSIONAL UNIVERSITY
   52   53   54   55   56   57   58   59   60   61   62