Page 55 - DMTH202_BASIC_MATHEMATICS_II
P. 55
Basic Mathematics-II
Notes 2
3
h
h
f
h
h
)
(x 1)dx lim [ (1) f (1 h f (1 2 ) f (1 3 ) f (1 n 1 )]
1 h 0
3
2
2
2
3
2
2
3
3
h
lim [2 2 3h 3h h 2 2.3h 2 .3h 2 .h 2 3.3h 3 .3h 3 h 3
h 0
2 (n 1)3h (n 1) 3h (n 1) h 3 ]
2
3
2
2
2
2
2
h
h
h
lim [2n 3 (1 2 3 (n 1)) 3 (1 2 3 (n 1) 2
h 0
3
3
3
3
h 3 (1 2 3 ). (n 1) ]
( n n 1) 2 (n n 1)(2n 1) 3 (n n 1)
lim h 2n 3h 3h h
h 0 2 6 2
lim h 2nh 3 nh (nh h )(2nh h 1 [nh (nh h )] 2
)
h 0 2 4
3 1 1 2
)
)
lim 2 (1 h (1 h )(2 h (1 h )
h 0 2 2 4
2 1 2 1 47
2 1 3
3 4 3 4 12
Example: Evaluate the following definite integrals as limit of sums:
5 1
2x
x
1. e dx 2. e dx
2 1
3 1
x
3. e dx 4. e 2 3x
1 0
Solution:
5
x
1. e dx
2
x
f ( ) ex ,a 2,b 5andnh b a 2 3
f ( ) f (2) e 2
a
)
)
( f a h f (2 h e 2 h e 2 .e 2h
h
h
( f a 2 ) f (2 2 ) e 2 2h e 2 .e 2h
h
( f a 3 ) f (2 3 ) e 2 3h e 2 .e 3h
h
:
:
h
h
n
( f a n 1 ) f (2 1 ) e 2 (n 1) h e 2 .e (n 1)h
b
h
h
h
f
h
Now, f ( )dx lim [ ( ) ( f a h ( f a 2 ) ( f a 3 ) ( f a n 1 )]
a
)
x
h 0
a
3
2x
3h
2h
2
h
h
e dx lim [e e 2 .e e 2 .e e 2 .e e 2 .e (n 1)h ]
2 h 0
nh
n
e 2 (e 1) ( a r 1)
2
lim h a ar ar ar n 1
h
h 0 e 1 r 1
h 2 3
e
lim . (e 1) [ nh 3]
h
h 0 e 1
x
e 1
3
5
2
e (e 1) e e 2 Using lim 1
x 0 x
50 LOVELY PROFESSIONAL UNIVERSITY