Page 52 - DMTH202_BASIC_MATHEMATICS_II
P. 52

Unit 4: Definite Integral




                    lim h [2n h (1 2 3   (n   1)]                                          Notes
                          
                                 
                              
                   h 0
                                                      )
                                                   
                             ( n n   1)    nh (nh h 
                    lim h  2n h     lim h  2nh 
                          
                   h 0      2      h 0    2     
                                             
                            
                         
                    lim h [4 (2 h )]       [ nh   2]
                   h 0
                    4 2   6.
                    
                 Example:
          Evaluate the following definite integrals as limit of sums:
               4                        3                       4
                                                                    2
                  2
                                           2
                                              x
          1.    (x   ) x dx       2.  (2x   5 )dx       3.  (2x   3x   1)dx
               1                        1                       2
          Solution:
               4
                  2
          1.    (x   ) x dx
               1
                     2
                                               
                 x
                f  ( )   x   , x a   1,b   4andnh   b a   4 1   3
                                          
                 a
                f  ( )   f (1) 0
                        
                                   2
                                                             2
                                   )
                     )
                                              
                  
                                 
                ( f a h   f  (1 h ) (1 h  (1 h ) 1 h 2 2h  1 h   h   h
                                                        
                             
                                                 
                                        
                                           
                          
                                                    2
                                      2
                                                                     2
                                                                   2
                                                      2
                             h
                                     h
                                             h
                     h
                           
                ( f a   2 )   f  (1 2 ) (1 2 )  (1 2 ) 1 2 h   4h   1 2h   2 h   2h
                                               
                                  
                               
                                                             
                                           
                                                  
                                                                     2
                                                      2
                                       2
                                                                   2
                                                    2
                              h
                                
                                   
                     h
                                                  
                                             h
                                           
                                     h
                                               
                ( f a   3 )   f  91   3 ) (1 3 )  (1 3 ) 1 3 h   6h  1 3h   3 h   3h
                                                             
                     :
                     :
                                              2
                                             h
                       h
                                                       h
                                   h
                                                  
                                    
                ( f a n  1 )   f  (1 n  1 ) (1 n  1 )  (1 n   1 )
                                       
                  
                              
                                                   2
                                                     2
                          2
                        2
                 1 (n   1) h   2(n  1)h   1 (n   1)h   (n  1) h   (n  1)h
                                      
                  
                    b
                       x
                                   a
                                                            h
                                 f
                                                                          h
                                            )
                                                   h
               Now, f ( )dx   lim h [ ( )   ( f a h   ( f a   2 )   ( f a   3 )    ( f a n   1 )]
                                         
                    
                                                                     
                            h  0
                    a
                    2
                                                  h
                                           )
                 4 (x   ) x dx   lim [ (1)   f  (1 h   f  (1 2 )   f  (1 3 )
                                                
                               h
                                 f
                                                        
                                                           h
                                        
                          h 0
                                                         h
                                                    
                 1                              f  (1 n  1 )]
                                    2
                                  2
                            2
                                         2
                                       2
                         
               i.   lim [0 h    2 h   2 h   3h
                      h
                              h
                   h 0
                                              2
                                               2
                                       (n   1) h   (n   1) ]
                                                       h
                         2
                                  2
                           2
                               2
                                             2
                        h
                      h
                                                    
                                                  
                    lim [ (1   2   3   (n   1)   h (1 2 3    (n  1))]
                   h 0
                         2 (n n   1)(2n   1)  ( n n   1)
                    lim h h            h     
                       
                   h 0        6          2   
                                   
                                            
                            
                        nh (nh h )2nh h  nh (nh h 
                    lim             
                   h 0     6           2    
                                       
                          
                               
                                         )
                       3(3 h )(6 h )  3(3 h 
                                                         
                    lim                               [ nh   3]
                   h 0    6        2    
                   3(3)(6)  3(3)  9  27
                              9   
                     6      2     2   2
                                           LOVELY PROFESSIONAL UNIVERSITY                                   47
   47   48   49   50   51   52   53   54   55   56   57