Page 67 - DMTH202_BASIC_MATHEMATICS_II
P. 67
Basic Mathematics-II
Notes 1 1
x
x
(sinx cos ) ( cosx sin )
I 2 2 dx
0 sinx cosx
1 1 cosx sinx
1dx dx
2 2 sinx cosx
0 0
1 1
x log|sinx cos |
x
2 0 2 0
1 1
| 0| log|sin cos | log|sin0 cos0|
2 2
1
log| 1| log|1|
2 2 2
Example: Evaluate the following integrals:
1
x
1. xe dx
0
2
2. logxdx
1
/2
/2 /2
3. x cosxdx sinx sinxdx
0 0 0
x
4. cos2 logsinxdx
0
/6
2
x
5. (2 3 )cos3xdx
0
4 x x
2
6. dx
2 2x 1
e x 1 x logx
7. e x dx
1
Solution:
1
x
1. xe dx
0
1
1 x
x
xe e dx
0
0
1
x
0
1
]
[1.e 0] e [e e e e 1 1
e
0
2
2. logxdx
1
2
2 1
1
log .x .xdx
x
1 x
62 LOVELY PROFESSIONAL UNIVERSITY