Page 78 - DMTH202_BASIC_MATHEMATICS_II
P. 78

Unit 5: Definite Integrals by Substitution




                 6  4      5                                                                   Notes
          (b)    2     3     dx
                
                            
                  1 2x    1 2x
                1
                  y
          (c)   0   2  e   2cos   y dy
                0      z 
          (d)      3sin      5cos     z dz
                3      2 
          Solution:

          Because we’ve done performed a few substitution rule integrals, here we aren’t going to put a lot
          of exertion into elucidating the substitution part of things here.
                5            2  5
          (a)    1   1 w   2w w   dw
                
               The substitution and converted limits are,

                                                              1
               u   2w w  2     du   2 2w dw      1 w dw      dw
                     
                                                              2
               w   1         u   1             w  5     u  35
               At times a limit will stay similar after the substitution.  Don’t get thrilled when it takes
               place and don’t imagine it to occur all the time.
               Here is the integral,

                5            2  5   1  35  5
                 1   1 w  2w w   dw   1   u du
                                   2  
                                   1   35
                                    u  6    153188802
                                   2    1
                 6  4      5
          (b)    2   1 2x   3    1 2x  dx
                            
               Here is the substitution and converted limits for this problem,

                                              1
               u   1 2x    du   2dx    dx   du
                   
                                             2
               x   2       u   3      x   6      u  11
               The integral is then,
                 6  4      5      1   11   3  5
                 2     3     dx    3   4u   du
                            
                        1 2x     2       u
                  1 2x
                                   1               11
                                    2u   2   5 In u  
                                   2              3 
                                   1   2         1   2    
                                         5 In 11      5 In3
                                                             
                                                
                                   2   121       2   9    
                                   112   5      5
                                        In 11   In 3
                                   1089  2      2
                1
                  y
          (c)   2  e   2cos   y dy
                0 
               This integral requires to be divided into two integrals as the first term doesn’t need a
               substitution and the second does.


                                           LOVELY PROFESSIONAL UNIVERSITY                                   73
   73   74   75   76   77   78   79   80   81   82   83