Page 79 - DMTH202_BASIC_MATHEMATICS_II
P. 79

Basic Mathematics-II




                    Notes                1  y            1  y   1
                                        0   2 e   2cos   y dy    0  2  e dy   0  2  2 cos   y dy
                                       Here is the substitution and converted limits for the second term.
                                                                         1
                                        u   y     du   dy       dy   du
                                                                         
                                                                        1               
                                        y   0        u   0        y            u 
                                                                        2               2
                                       Here is the integral.
                                         1               1     2  
                                                           y
                                          y
                                        0   2 e   2cos   y dy    0   2  e dy     0   2  cos   u du
                                                                  
                                                          1
                                                          2 2     2
                                                         y
                                                        e    sin u
                                                            
                                                          0       0
                                                         1     2     2
                                                            0
                                                         2
                                                        e   e   sin    sin 0
                                                                  2  
                                                         1    2
                                                        e   1 
                                                         2
                                                              
                                         0     z 
                                   (d)      3sin     5cos     z dz
                                         3     2 
                                       This integral will need two substitutions.  So first divide the integral so we can accomplish
                                       a substitution on each term.
                                         0     z             0      z   0
                                            3sin     5cos     z dz      3sin   dz      5cos     z dz
                                         3     2             3      2   3
                                       There are the two substitutions for these integrals.
                                           z           1
                                        u          du   dz              dz   2du
                                           2           2
                                                    
                                        z        u           z   0       u  0
                                           3         6
                                        v     z   dv   dz        dz   dv
                                                         2
                                        z            v         z   0        v 
                                           3              3
                                       Here is the integral for this problem.
                                         0     z              0           
                                                                 
                                                                             
                                            3sin     5cos     z dz   6 sin   u du   5  2 cos   v dv
                                         3     2              6           3
                                                                      0      x
                                                               6cos   5sinu      2x
                                                                           v
                                                                      6       3
                                                                        5 3 
                                                               3 3 6    
                                                                  
                                                                        2  
                                                                3
                                                                  6
                                                               2
                                          Example: Evaluate each of the following.
                                         5  4t
                                   (a)   5   2  dt
                                          2 8t
                                           

          74                                LOVELY PROFESSIONAL UNIVERSITY
   74   75   76   77   78   79   80   81   82   83   84