Page 133 - DCAP601_SIMULATION_AND_MODELING
P. 133

Unit 8: Simulation of Queuing System (II)



            1.   Two Servers in Series Simulation Algorithm:                                      Notes

                 Initialize: t = N  = N  = 0, SS = (n , n ) = (0, 0); generate T , set t  = T , t  = t  = .
                            A   D         1  2               0    A   0  1  2
                 Update the system state by means of the subsequent cases:
                 (a)  t  = min(t , t , t ) (a new arrival at time t )
                      A      A  1  2                  A
                     reset t = t , N  = N  + 1, n  = n  + 1;
                             A  A   A     1  1
                     generate T  and reset t  = T  (next arrival time);
                              t        A   t
                     if n  = 1 generate Y  ~ G  and reset t  = t + Y ;
                        1            1   1        1     1
                     collect output data A (N ) = t.
                                      1  A
                 (b)  t  < t , t   t  (a departure from 1 at time t )
                      1  A  1  2                       1
                     reset t = t , n  = n  — 1, ; n  = n  + 1;
                             1  1  1      2   2
                     if n  > 0 generate Y  ~ G  and reset t  = t + Y ;
                        1            1   1        1     1
                       otherwise set t  =  (queue 1 is empty);
                                   1
                     if n  = 1 generate Y  ~ G  and reset t  = t + Y ;
                        2            2   2        2     2
                     collect output data A (N  — n ) = t.
                                      2  A   1
                 (c)  t  < t , t  < t  (a departure from 2 at time t )
                      2  A  2  1                       2
                     reset t = t , n  = n  — 1, N  = N  + 1;
                             2  2  2     D    D
                     if n  > 0 generate Y  ~ G  and reset t  = t + Y ;
                        2            2   2        2     2
                       otherwise set t  =  (queue 2 is empty);
                                   2
                     collect output data D(N ) = t.
                                        D
                     Cases 1, 2, and 3 are used until t  > T.
                                               A
                     Then cases 2 and 3 are used until n  = 0.
                                                 1
                     Then case 3 is used until n  = 0.
                                          2
                     Then T  = max(t — T, 0).
                           p
            2.   End of “run” results
                 (a)  Times (A (1),A (1),D(1)), . . . , (A (N ),A (N ),D(N )) provide (A  — A ), (D — A ),
                             1   2              1  A  2  A    A          2    1        2
                     (D — A ) averages.
                            1
                 (b)  Time T  is server overtime.
                           p
                 (c)  (Event,Time) data (n (t ), n (t ), t ) offers history.
                                      1  i  2  i  i
            3.   Averages  over many runs provide expected service  time, server overtime, and other
                 statistics.
            4.   Generalizations to numerous servers in series.
            5.   Example Matlab Function for Two Servers in Series function [A  A  D T  E ] = sriesv(T,lam,
                                                                   1  2  p  v
                 l , l )
                 1  2
                 Sample Runs
                 for i =1:100
                 [A , A , D, T , E ] = sriesv(9,6,4,3);
                   1  2   p  v
                 DA(i) = mean(D-A );
                                1
                 end, disp(mean(DA))
                 6.1033
                 [A , A , D, T , E ] = sriesv(.5,6,4,3); disp(Ev)
                   1  2    p  v
                 1      0    0.006042
                 0     1     0.082711
                 0     0      0.14119
                 1     0     0.15819
                 2     0     0.23596
                 1     1     0.26024



                                             LOVELY PROFESSIONAL UNIVERSITY                                  127
   128   129   130   131   132   133   134   135   136   137   138