Page 110 - DMTH201_Basic Mathematics-1
P. 110

Unit 4: Determinants




                                                                                                Notes
                 Example
          For the following market conditions, find the equilibrium quantities and prices by using matrix
          inverse method.
                            D
                                                         S
                          Q  = 45 – 2P  + 3P  – 7P ,   Q  = –5 + 4P 1
                                                         1
                                              3
                                     1
                            1
                                          2
                            D
                                                         S
                          Q  = 16 + 2P  – P  + 3P ,    Q  = –19 + 5P  2
                                         2
                                      1
                                             3
                            2
                                                         2
                                                         S
                            D
                          Q  = 30 – P  + 2P  – 8P ,    Q  = –6 + 2P 3
                                         2
                                    1
                                             3
                                                         3
                            3
          Solution:
          Using the equilibrium condition  Q D  Q S ,  we can write
                                       1    1
                             45 – 2P  + 3P  – 7P  = –5 + 4P
                                  1    2   3        1
          or                   –6P  + 3P  – 7P  = –50
                                  1    2   3
          or                    6P  – 3P  + 7P  = 50                               ...(1)
                                  1    2   3
                                          D
          Similarly                     Q 2  = Q 2 S
                             16 + 2P  – P  + 3P  = –19 + 5P
                                   1   2   3         2
          or                    2P  – 6P  + 3P  = –35                              ...(2)
                                  1    2   3
                                          D
          and                           Q 3  = Q 3 S
                              30 – P  + 2P  – 8P  = –6 + 2P
                                  1    2   3        3
          or                   –P  + 2P  – 10P  = –36
                                 1    2    3
          or                    P  – 2P  + 10P  = 36                               ...(3)
                                 1    2    3
          The system of equations given by (1), (2) and (3) can be written as the matrix equation
                            6    3  7    P       50           6   3   7
                                          1
                            2    6  3   P    =   35 .  Let  A  2  6   3
                                          2
                            1    2 10   P 3      36           1   2 10
                                        |A| = –360 – 9 – 28 + 42 + 36 + 60 = –259.
          Since |A| ¹ 0, the solution is unique. Writing the matrix of cofactors as
                                  54    17    2                 54 16     33
                                  16    53     9           1
                                                     –1
                            C =                     A  =        17 53      4
                                  33     4   30           259    2    9   30
                          P             54 16     33    50
                           1       1
          Thus,           P 2  =        17 53      4    35
                          P       259    2   9    30    36
                           3
                                    50 54 35 16 36 33
          Hence             P  =                              8
                             1               259
                                    50 17 35 53 36 4
                            P  =                             11
                                            259
                             2



                                           LOVELY PROFESSIONAL UNIVERSITY                                   103
   105   106   107   108   109   110   111   112   113   114   115