Page 25 - DMTH201_Basic Mathematics-1
P. 25

Basic Mathematics – I




                    Notes          Addition formulae
                                   For any two numbers A and B,

                                   cos (A + B) = cos A cosB  sinA sinB

                                   In given figure trace out
                                    SOP = A
                                    POQ = B

                                    SOR =  B
                                   Where points P, Q, R, S lie on the unit circle.
                                   Coordinates of P, Q, R, S will be (cos A, sin A),
                                   [cos (A + B), sin (A + B)],
                                   [cos ( B), sin ( B)], and (1, 0).

                                   From the given figure, we have

                                   side OP = side OQ
                                    POR =  QOS (each angle =  B +  QOR)
                                   side OR = side OS

                                   ∆POR   ∆QOS (by SAS)
                                       PR = QS
                                                        2
                                       PR =  (cos A  cos B)  + (sin A  sin( B) 2
                                       QS =  (cos A + B  1)  + (sin A + B  0)  2
                                                         2
                                              2
                                       Since PR  = QS 2
                                          2
                                       cos  A + cos  B  2cos A cos B + sin  A + sin  B + 2sin A sin B
                                                 2
                                                                          2
                                                                   2
                                       = cos (A + B) + 1  2cos(A + B) + sin (A + B)
                                                                    2
                                           2
                                       1 + 1  2(cos A cos B   sin A sin B) = 1 + 1  2cos(A + B)
                                       cosA cosB   sinA sinB = cos (A + B) (I)
                                   For any two numbers A and B, cos (A   B) = cos A cos B + sin A sin B
                                   Proof: Replace B by  B in (I)
                                             cos(A – B) =  cos A cos B + sin A sin B
                                               cos (–B) =  cos B and sin(–B) = –sin B
                                   For any two numbers A and B
                                             sin(A + B) =  sin A cos B + cos A sin B

                                   Proof: We know that cos ( /2 – A) = sin A
                                           sin ( /2 – A) =  cos A
                                             sin(A + B) =  cos[ /2 – (A + B)
                                                      =  cos[( /2 – A) + B]

                                                      =  cos( /2  A) cos B + Sin ( /2   A)




          18                               LOVELY PROFESSIONAL UNIVERSITY
   20   21   22   23   24   25   26   27   28   29   30