Page 26 - DMTH201_Basic Mathematics-1
P. 26

Unit 2: Trigonometric Functions-II




          or         sin(A + B) =  sin A cos B + cos A sin B .....(II)                          Notes
          For any two numbers A and B
                     sin(A  B) =  sin A cos B  cos A sin B
          Proof: Replacing B by   B in (2), we have

                   sin(A + ( B)) =  sin A cos( B) + cos A sin( B)
          or         sin(A  B) =  sin A cos B  cos A sin B


                 Example: Find the value of each of the following:
               (i)   sin5 /12     (ii)  cos /12     (iii)  cos7 /12

          Solution
          (a)   (i)   sin 5 /12 = sin ( /4 +  /6) = sin  /4. cos  /6 + cos /4. sin /6
                                =  1/√2. 3/2 + 1/ 2.1/2
                        sin 5 /12 =  3 + 1/ 2. 1/2 =  3 + 1/2 2
               (ii)     cos  /12 =  cos( /4 –  /6)

                                =  cos /4 . cos /6+ sin /4+ sin /6
                                =  1/ 2. 3/2+ 1/ 2.1/2 =  3 + 1/2 2
                        cos  /12 =  √3 + 1/2/ 2
                    Observe that sin 5 /12 = cos /12

               (iii)   cos 7 /12 =  cos ( /3 +  /4)
                                =  cos /3 . cos /4   sin /3 . sin /4
                                =  1/2. 1/ 2  √3/2. 1/ 2 = 1  √3 /2 2
                       cos 7 /12 =  1    3/2 2

          2.1.2 Transformation of Products into Sums and Inverse


          Transformation of Products into Sums or Differences

          We know that
                              sin(A + B) =  sin A cos B + cos A sin B
                              sin(A  B) =  sin A cos B  cos A sin B

                              cos(A + B) =  cos A cos B  sin A sin B
                              cos(A  B) =  cos A cos B + sin A sin B
          By adding and subtracting the first two formulae, we get respectively

                             2sin A cos B =  sin(A + B) + sin(A  B)                …(1)

          and                2cos A sin B =  sin(A + B)  sin(A  B)                 …(2)








                                           LOVELY PROFESSIONAL UNIVERSITY                                    19
   21   22   23   24   25   26   27   28   29   30   31