Page 30 - DMTH201_Basic Mathematics-1
P. 30

Unit 2: Trigonometric Functions-II





               Thus, it is verified that                                                         Notes
                        sin 2A =  2sin A cos A =


          (ii)         cos 2A =


                    2
                          2
                 cos  A – sin  A =

                        2
                    2cos  A – 1 =


                              =


                          2
                    1 – 2sin  A =



                              =




               Thus, it is verified that
                        2
                                       2
                               2
                                                    2
               cos2A = cos  A – sin  A = 2cos  A – 1 = 1 – 2sin  A =
          2.1.4 Trigonometric Function of 3A in terms of A
          (a)   sin 3A in terms of sin A

               Substituting 2A for B in the formula
                    sin (A + B) =  sin A cos B + cos A sin B, we get
                    sin(A + 2A) =  sin A cos 2A + cos A sin 2A
                                          2
                              =  sin A(1 – 2sin  A) + (cos A   2sin A cos A)
                              =  sin A – 2sin  A + 2sin A(1 – sin  A)
                                                        2
                                         3
                                         3
                                                       3
                              =  sin A – 2sin  A + 2sin A – 2sin  A
                        sin 3A =  3sin A – 4sin  A                                 ....(1)
                                          3
          (b)   cos 3A in terms of cos A
               Substituting 2A for B in the formula
                    cos(A + B) =  cos A cos B – sin A sin B, we get
                   cos(A + 2A) =  cos A cos 2A – sin A sin 2A
                              =  cos A(2cos  A – 1) – (sin A)   2sin A cos A
                                        2






                                           LOVELY PROFESSIONAL UNIVERSITY                                    23
   25   26   27   28   29   30   31   32   33   34   35