Page 46 - DMTH201_Basic Mathematics-1
P. 46

Unit 2: Trigonometric Functions-II




                                                                                                Notes
                        R.H.S =


                              =

                                  –1
                              =  sin  [sin   cos   – cos   sin  ]
                              =


                        L.H.S. =  R.H.S.
          (iv)  Let x = cos  , y = cos
                        L.H.S. =   –
                        R.H.S. =  cos  [cos   cos   + sin   sin  ]
                                  –1
                              =

                        L.H.S. =  R.H.S.

          2.6 Derivatives of Exponential Functions

                 x
          Let y = e  be an exponential function.                                    …(i)
                        y +  y =  e (x +  x)  (Corresponding small increments)    …(ii)



          From (i) and (ii), we have
                            y =  e x +  x  – e x
          Dividing both sides by  x and taking the limit as  x   0


                              =



                              =  e   1 = e x
                                x

          Thus, we have



          Working rule:       =

          Next, let         y =  e ax + b

          Then          y +  y =  ea (x +  x)  +b
                                                 [ x and  y are corresponding small increments]
                            y =  e a(x +  x) + b  – e ax – b
                              =  e ax + b  [a  – 1]
                                     edx






                                           LOVELY PROFESSIONAL UNIVERSITY                                    39
   41   42   43   44   45   46   47   48   49   50   51