Page 109 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 109
VED1
E\L-LOVELY-H\math5-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
bdkbZ f}rh; ,oa mPprj Øe osQ vodyu
osQ lkis{k iqu% vodyu djus ij] uksV
2
dy : Am ( sin mx ). d (mx − ) Bm cos mx . d (mx )
−
dx 2 dx dx
:8 7
7 8 &7
7
:8 7
7 ; &
7 : 8 7
2
dy 2
vr% + my : -
dx 2
mnkgj.k 3- ;fn
] rks fl¼ dhft, fd
%"
gy % fn;k gS] :
: <
=
iqu% vodyu djus ij
: <
= 8
;
<8
=
: 8
8
: 8
8
9 < :
=
y
2
x
: − sin . 1 − y cos x , < ls=
cos x
vr% ;
;
: -
mnkgj.k 4- ;fn
gks rks fl¼ dhft, fd
2
dy − 2a dy (a 2 b 2 ) y = . 0
dx 2 dx
gy % fn;k gS] :
osQ lkis{k vodyu djus ij]
dy : e ax d (sin bx + sin bx . d (e ax )
)
dx dx dx
d ax d
)
.
: e ax cos bx . (bx + sin bx e . (ax )
dx dx
: be ax cos bx + ae ax sin bx
: be ax cos bx + ay , <lehdj.k (1) ls=
osQ lkis{k iqu% vodyu djus ij]
2
dy ax d d ax dy
dx 2 : be . dx (cos bx + ) cos bx . dx (e ) + a dx
ax d ax d dy
: b e .( sin bx ) . dx (bx + ) cosbx .e . dx (ax ) + a dx
−