Page 110 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 110
VED1
E\L-LOVELY-H\math5-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
vFkZ'kkfL=k;ksa dk xf.kr
uksV dy
: b [ be− ax sin bx + ae ax cos bx + ] a
dx
dy
: − be sin bx + a (be cos bx + ) a
ax
ax
2
dx
2 dy dy dy 2 2
: − by + a − ay + a = 2a − (a + b ) ,
y
dx dx dx
lehdj.k (1) vkSj (2) ls
dy dy
2
vr% − 2a + (a + 2 b 2 ) y : -
dx 2 dx
Lo&ewY;kadu
1- fjDr LFkkuksa dh iwfrZ djsa
/
B
µ
d dy
dk --------- vody&xq.kkad dgrs gSaA
dx dx
d d y 2 d d y
2
dx dx 2 dx (........) = dx 2
iz'ukoyh "
dy
3
" ;fn : ' ; ; ; rks 3 Kkr dhft,A
dx
3
dy
#" ;fn :
; ; ;
rks 3 Kkr dhft,A
dx
3
dy 2
)" ;fn : * rks fl¼ dhft, fd = -
dx 3 x
fuEufyf[kr iQyuksa osQ f}rh; vody&xq.kkad Kkr dhft, %
'" * *
"
+" "
" dk #ok¡ vody&xq.kkad Kkr dhft,A
2
dy 2
" ;fn :
* ; &
* rks fl¼ dhft, fd 2 + py = 0.
dx
2
dy 2a xy
2
%" ;fn ; 8
: -9 rks fl¼ dhft, fd 2 = 2 3 .
dx (ax − y )