Page 115 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 115

VED1
          E\L-LOVELY-H\math6-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                          bdkbZ    vodyu% lkis{k




            (   
 θ j[kus ij                                                                       uksV

                                              1 +  x −  2  1   1 +  tan θ  2  −  1
                                     ( tan −  1        =  tan −  1
                                                 x                tan θ

                                     ( tan −  1 sec θ− 1  = tan −  1 1 −  cos θ
                                              tan θ          sin θ
                                                    2 1
                                                2sin   θ
                                     ( tan − 1    1   2  1
                                             2  sin  θ  cos  θ
                                                  2     2

                                     ( tan − 1     tan  θ    =  θ   =  tan − 1  x
                                                 2   2    2

                                 dy     d     − 1  1 +  x −  2  1 
          ∴                        1   (     tan          
                                 dx    dx          x       

                                        d   tan − 1  x   1
                                     (  dx      2      =  2 (1 +  x 2 )

                                 dy     d     − 1     1
          rFkk                     2   (  (tan   ) x =   2
                                 dx    dx           1 +  x
                                 dy    d [tan − 1  { 1 −  x −  2  1}/ x
          ∴                        1   (
                                 dy 2        d (tan − 1  ) x
                                           1
                                        2(1 +  x 2 )  1
                                     (          =  .                                  mÙkj
                                           1      2
                                         1 +  x 2




                                                           1                       32


             VkLd    
     dk vody&xq.kkad 
 
   osQ lkis{k   (   ij Kkr dhft,A  (mÙkj %   )
                                                           3                        5
                                2x              2x
          mnkgj.k 4-  tan −1      dk  sin −1   2     osQ lkis{k vody&xq.kkad Kkr dhft,A
                            1 − x 2        1+ x  

                               2x              − 1   2x  
          gy % ekuk    (  tan − 1   2    rFkk    (  sin    2 
                               1 −  x             1 +x  
            (   
 θ j[kus ij]
                                              2tan θ  
                                     ( tan −  1        =  tan −  1  (tan 2 ) θ  =  2θ  =  2 tan −  1  x
                                                    2
                                              1−  tan θ 
                                 dy 1      1       2
          rc                          ( 2.    2  =   2
                                 dx      1 +  x  1 +  x
   110   111   112   113   114   115   116   117   118   119   120