Page 115 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 115
VED1
E\L-LOVELY-H\math6-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
bdkbZ vodyu% lkis{k
(
θ j[kus ij uksV
1 + x − 2 1 1 + tan θ 2 − 1
( tan − 1 = tan − 1
x tan θ
( tan − 1 sec θ− 1 = tan − 1 1 − cos θ
tan θ sin θ
2 1
2sin θ
( tan − 1 1 2 1
2 sin θ cos θ
2 2
( tan − 1 tan θ = θ = tan − 1 x
2 2 2
dy d − 1 1 + x − 2 1
∴ 1 ( tan
dx dx x
d tan − 1 x 1
( dx 2 = 2 (1 + x 2 )
dy d − 1 1
rFkk 2 ( (tan ) x = 2
dx dx 1 + x
dy d [tan − 1 { 1 − x − 2 1}/ x
∴ 1 (
dy 2 d (tan − 1 ) x
1
2(1 + x 2 ) 1
( = . mÙkj
1 2
1 + x 2
1 32
VkLd
dk vody&xq.kkad
osQ lkis{k ( ij Kkr dhft,A (mÙkj % )
3 5
2x 2x
mnkgj.k 4- tan −1 dk sin −1 2 osQ lkis{k vody&xq.kkad Kkr dhft,A
1 − x 2 1+ x
2x − 1 2x
gy % ekuk ( tan − 1 2 rFkk ( sin 2
1 − x 1 +x
(
θ j[kus ij]
2tan θ
( tan − 1 = tan − 1 (tan 2 ) θ = 2θ = 2 tan − 1 x
2
1− tan θ
dy 1 1 2
rc ( 2. 2 = 2
dx 1 + x 1 + x