Page 118 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 118
VED1
E\L-LOVELY-H\math6-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
vFkZ'kkfL=k;ksa dk xf.kr
uksV dy dy
cos (a + y ) cos y − sin . { sin (a + y − y )}
( dx dx
cos (a + ) y
2
dy
y
{cos (a + y ).cos y + sin (a + y ).sin }
( dx
2
cos (a + ) y
dy
cos (a + y − ) y
( dx
2
cos (a + ) y
cos a dy
(
2
cos (a + y ) dx
dy cos (a + ) y
2
⇒ (
dx cos a
iqu% tc ( +
rc
( + ⇒ ( π
2
dy cos (a +π )
n
( + ij] =
dx cos a
2
dy cos a
⇒ (
dx cos a
mnkgj.k 9- ;fn
rks fl¼ dhft,
2
( − 1 2 dy − x x dy = 4.
)
dx 2 dx
gy % (
,
dy ( 2(sin − 1 x − cos − 1 ) x
dx 1 − x 2
2 dy
⇒ 1 − x ( 2(sin − 1 x − cos − 1 ) x
dx
osQ lkis{k vodyu djus ij
2
1 − x 2 dy + 1 ( 2 ). dy ( 2 1 + 1
x
−
dx 2 21 − x 2 dx 1 − x 2 1 − x 2
2
(1 − x 2 dy − x dy
)
dx 2 dx ( 2. 2
1 − x 2 1 − x 2
2
2 dy dy
∴ (1 − x ) − x ( $
dx 2 dx