Page 120 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 120
VED1
E\L-LOVELY-H\math6-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
vFkZ'kkfL=k;ksa dk xf.kr
uksV 6-2 lkjka'k
• eku yhft, ( rFkk ( vFkkZr~ rFkk ) osQ nks iQyu gSa] nksuksa dk osQ lkis{k
vodyu djus ij
dy 1 = f ′ x dy 2 = f ′
dx 1 () rFkk dx 2 ()x
6-3 'kCndks'k
• lkis{k 1 . % vkaf'kdA
6-4 vH;kl&iz'u
1 + 1 x − 2 1 1
−
1- tan dk vody&xq.kkad
osQ lkis{k Kkr dhft,A (mÙkj % )
x 2
dy x 2 1 − y 6
2- ;fn 1 − x + 6 1 − y = 6 a 3 (x − 3 y 3 ) gks] rks lkfcr djsa fd dx = y 2 1 − x 6
mÙkj % Lo&ewY;kadu
6-5 lanHkZ iqLrosaQ
iqLrdsa 1- eSFksesfVDl iQkWj bdksukWfeDl µ ekydkWe] fudksyl] ;w-lh- yUnuA
2- eSFksesfVDl iQkWj bdksukWfeDl µ dkyZ ih- fleksu] ykWjsUl CyweA
3- eSFksesfVDl iQkWj bdksukWfeDl µ dkmQfUly iQkWj bdksukWfed ,tqosQ'kuA
4- eSFksesfVDl iQkWj bdksukWfeLV µ esgrk vkSj enukuh µ lqYrku pUn ,.M lUlA
5- ,lsfU'k;y eSFksesfVDl iQkWj bdksukWfeDl µ uWV lsMsLVj] ihVj gkeUM] izSfUVl gkWy ifCy-
6- eSFksesfVDl iQkWj bdksukWfeLV µ ;kekus µ izSfUVl gkWy bfUM;kA
7- eSFksesfVDl iQkWj bdksukWfeDl ,.M iQkbukUl µ ekfVZu ukeZuA
8- eSFksesfVDl iQkWj bdksukWfeLV µ fleksu vkSj Cywe µ ohok ifCyosQ'kuA
9- xf.krh; vFkZ'kkL=k µ ekbdy gSjhlu] iSfVªd okYMjuA