Page 124 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 124

VED1
          E\L-LOVELY-H\math7-1 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth  10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV                                Y
                                                                       Maximum
                                                                        output  T
                                                        Output        t  N M   P t P = (L, K)
                                                                                   f
                                                        Total              L    L

                                                                              P
                                                          R                G
                                                                               K
                                                                           K
                                                        O                 Q
                                                            Units of labour
                                                                                X
                                                                   js[kkfp=k 7-1

                                js[kkfp=k 0   esa   lk/u dh bdkb;k¡   v{k ij rFkk oqQy mRiknu dks   v{k ij ekik x;k gSA    oqQy
                                mRiknu dks n'kkZrs gSaA   fcUnq ij oqQy mRiknu vf/dre gksrk gSA eku yhft;s oqQy mRiknu oØ    ij
                                fcUnq ij    Li'kZ js[kk [khaph x;h gSA   fcUnq ls   v{k ij yEcor~ js[kk [khaph x;h gS tks   v{k ij

                                fcUnq ij feyrh gSA
                                                         ∂ P
                                vc]   fcUnq ij <ky   .        (   
 θ
                                                         ∂ K
                                                               NG    NG
                                                             (     =
                                                               RG    OQ
                                                         ∂ P      NG
                                vc                     L     ( OQ     =  NG
                                                         ∂ L      OQ
                                                                ∂  P    ∂  P
                                ;wylZ izes;]                 (  L   +  K
                                                                ∂  L    ∂  K
                                                         ∂ P        ∂ P
                                ;k                     K     (  P − L   (         (
                                                         ∂ K        ∂ L
                                tgk¡   ( oqQy mRiknu Lrj
                                                                ∂  P    ∂  P
                                                                L   +  K
                                                                ∂  L    ∂  K
                                ;k        (    ,
                                bl izdkj oqQy mRiknu   
    rFkk    Hkkxksa esa foHkkftr gksrk gSA tgk¡    rFkk    Øe'k%   lk/u
                                rFkk   dks fn;s tkus okys iqjLdkj gSaA bl izdkj ;fn fdlh iQeZ osQ izR;sd lk/u dks mldh lhekUr mRikndrk
                                osQ cjkcj iqjLdkj fn;k tkrk gS rks oqQy mRiknu iwoZ:i ls ifjlekIr gks tk;saxsA

                                7-2-2 ;wylZ izes; dk xf.krh; gy


                                ;wylZ izes; le:i iQyu dh lgk;rk ls lhekUr mRikndrk osQ fl¼kar esa ,d fo'ks"k laca/ dks crkrh gSA ;fn
                                ! (    
    ,d " dksfV dk le:i iQyu gS rks ;g izes; vxzfyf[kr laca/ dks n'kkZrh gSµ
                                                           (    ,
   119   120   121   122   123   124   125   126   127   128   129