Page 133 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 133

VED1
          E\L-LOVELY-H\math7-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                bdkbZ    le:i iQyu ,oa ;wylZ izes;




                                  * δ ( Je rhozrk xq.kkad  9       
  
    /        
             uksV
                                   ( ( le:irk dksfV    '       2   '


          7-4-1 lh-bZ-,l- mRiknu iQyu osQ xq.k                 % % %    !     
 "

                                                                           1
          1- ;fn mRiknu iQyu js[kh; rFkk le:i gksrh gS rks izfrLFkkiu yksp (σ) fLFkj       osQ cjkcj gksrh gS
                                                                       1 +α 
                                                α    α
                                   	α
          tcfd mRiknu iQyu   ( γ δ +  ,    * δ    B   gksrk gS] c'krsZ γ ? +) + @ δ @   rFkk α ? *
          miifÙkµifjHkk"kk osQ vuqlkj izfrLFkkiu dh yksp
                                                         C
                                       ∂       / )  ∂ log (N  (N / )/N /C
                                                C
                                   σ (             =
                                         ∂              ∂ log R  R /R
               N                                 P
          ;gk¡]   ( mRiknu lk/uksa dk vuqikr rFkk ' (   C   ( ewY; vuqikrA
               C                                 P N

          vc mRiknu iQyu
                                                        α   
α
                                             α
                                     ( γ Aδ +  ,    * δ   B                         ...(7.1)
            osQ lkis{k esa vkaf'kd vodyu djus ij
                                 ∂P   ( γ A*(CαB Aδ +  ,    * α   B   *  ; A*α   * δ    α     B
                                                               α 	 
α
                                                  	α
                                 ∂N
                                        γv
                                                            v
                                                           ]
                                     (     δ  −α  + [ C  − (1  α  )N  −α − / α − 1  Aα   * δ     α      B      0
                                        α
          lehdj.k (7-1) ls
                                   P
                                                       α    α
                                            α
                                     ( Aδ +  ,    * δ   B
                                  γ  
                                 −α /v
                               P
                                            α
                                                       α
          vFkok                     ( Aδ +  ,    * α   B
                               γ  
                                v
                             v
                         P  −α(/ )( − / α −1)
                                                       α    α
          vFkok                    (Aδ +  α  ,    * δ   B                            0 !
                        γ  
          lehdj.k (7-3) dks lehdj.k (7-2) esa j[kus ij
                                 ∂P   ( v γ    P   1 +α / v  =  (1 −  δ  )N  −  (1 +  α  )      0 $
                                 ∂N          γ    

          iqu% lehdj.k (7-1) dks + osQ lkis{k esa vodyu djus ij
                                 ∂P   ( γ(Aδ +  ,    * δ   B   δ F +      α
                                                         α    α
                                             α
                                 ∂C
   128   129   130   131   132   133   134   135   136   137   138