Page 23 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 23

VED1
          E\L-LOVELY-H\math1-2 IInd 21-10-11 IIIrd  8-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                                   bdkbZ    iQyu




            13- ;fn   : D
9  9  9 8 E rks crkb, fd D;k fuEufyf[kr lEcU/ >  dk   esa? iQyu gSA dkj.k Hkh  uksV
                crkb,%

                  
    : D 8 9   9   9   9  
9   9  8 9 8  E

                        : D 
9   9   9   9   9 8   9  8 9 
 E

                                        2x +   5, x >  9
                                       
                                                  −
            14- ;fn   C   →   tgk¡       :  x −   2  1, x ∈  ( 9, 9)
                                        x −  4, x <  −  9
                                       
                rks      ]       ]    8    vkSj   D     E dk eku Kkr dhft,A

                                         x −  2  , x x ≥  2
            15- ;fn   C   →   tgk¡       :                               <mÙkj%  -9 8 9 8 =
                                         x −  2, x <  2

                esa      9   -  vkSj        dk eku Kkr dhft,A
                 9 tcfd 8  ≤   L 8

                          −  6x −  3,  −  1 ≤  x ≤  0,
            16- ;fn       :  
                            3x −  3,        0 <  x ≤  1

                  
  iQyu   dk Mksesu Kkr dhft,A
                            
                             1
                           9     9    - 9       9       osQ eku Kkr dhft,A
                             2
                            
                     lehdj.k        ;   : - dks gy dhft,A
          mÙkj%
                  
    : D   C 8  ≤   ≤  E       9 8 J 9 8 9           : 8 J  M  J

          1-12 iQyu dk ys[kkfp=k  &   $


          ;fn   :      9   dk dksbZ iQyu gks rks   dks   9   99    9   9     vkfn eku nsus ij iQyu osQ eku  Øe'k%



                9       9    9       9     ;k    9   9    9   9      vkfn gksaxsA ;fn funsZ'kkad T;kfefr dh Hkk¡fr  Av{k ij

            vkSj  A v{k ij   vFkkZr~       dks vafdr djosQ fcUnqvksa D  9       E9 D  9      E9    9 D  9      E9     vkfn






          dks vafdr djosQ ,d fu"dks.k oØ  0,   /    	   cuk fy;k tk; rks ;gh oØ iQyu dk ys[kkfp=k
          dgykrk gSA
          iQyu   :       dk ys[kkadu [khapus osQ fy,   osQ oqQN pqus gq, ekuksa osQ fy,   vFkkZr~       osQ eku Kkr
          djosQ fuEu lkj.kh cuk yhft,µ



          vc fcUnqvksa D8 9    8  E9 D8 9    8  E9 D8 9    8  E9 D-9    - E9 D 9      E9 D 9      E9 D        E  vkfn
          dks oxk±fdr dkxt ij vafdr djosQ ,d fu"dks.k oØ cukb;sA ;gh oØ iQyu dk ys[kkfp=k dgyk;sxkA
   18   19   20   21   22   23   24   25   26   27   28