Page 78 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 78

VED1
          E\L-LOVELY-H\math3-1 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth  10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV
                                3-5    dk  	osQ lkis{k vody&xq.kkad
                                             
     3


                                eku yks      :    gks rks     ; ,  :    ; ,
                                                               d

                                vr%    dk   osQ lkis{k vody&xq.kkad         gSA
                                                              dx
                                                      d           (x +  ) h  n  −  x n

                                ∴                          : lim
                                                     dx      h →  0     h
                                                                    (1 +
                                                                          / ) −
                                                           : lim        hx  n  1 ,     dks ckgj fudkydjA

                                                             h →  0       h
                                                 h

                                vc pw¡fd , → -9 ge   dks bdkbZ ls NksVk eku ldrs gSaA vr% # osQ lHkh ekuksa osQ fy,    ; ,6    dk f}in
                                                 x
                                izes;  R 
 ,    F/    ,  ls izlkj djus ij
                                                     d            x n      h  ( n n − 1) h 2    

                                                     dx     : lim 0 h      +  x  + . n  1.2  x 2  +  − ..... 1  1     
                                                             h →
                                                                  x   n    h  ( n n − 1) h 2    
                                                           : lim       . n  +     .   +  ..... 
                                                             h →  0 h      x  1.2  x 2       

                                                           :  lim              n  +  ( n n − 1) h  +  .....   
                                                             h →  0    x  1.2x 2      
                                                                      n                    
                                                           : lim          +  h ×      
 (         
 
   






                                                             h →  0    x                   
                                                           : #    
   9 D;ksafd , → -
                                                     d

                                ∴                             #
                                                     dx
                                                            d
                                bldk ,d fof'k"V ifj.kke ;g gS]     :
                                                            dx
                                           d            d



                                mnkgj.k 1-    (9   	
	 "   	    	
	 "       	
	+)  "
                                          dx            dx
                                           d              d


                                mnkgj.k 2-   	  +   	
	 	+	  	  	
	 	+"#        	
	 	 # "
                                          dx              dx
                                           d      1  =  d  (x -1/2 )  1       1
                                mnkgj.k 3-   	               	
	 	  	    	    	
	 	      	  "
                                          dx      x  dx          2            2

                                          d    6
                                                )

                                   VkLd     (5x dk eku Kkr djsaA                                 (mÙkj % )%  )
                                         dx
   73   74   75   76   77   78   79   80   81   82   83