Page 104 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 104
VED1
E L-LOVELY-H math5-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
noEPk;soh dk rfDs
B'N gqPBktbh 5H1
3
3
2
1H i/eo y = 8x + 4x + 3x + 11 sK dy gsk eo'.
dx 3
3
3
2
2H i/eo y = ax + bx + cx + d sK dy gsk eo'.
dx 3
3
2
3H i/eo y = x log x, sK f;ZX eo' fe dy = 2 H
dx 3 x
fBwBfbys cbBK d/ d{i/ fBy/VB^r[DKe gsk eo'L
3
4H (i) x log x. (ii) x log x.
5H sin (cos x)H
x
3
4x
6H x e . 7H tan e H
nx
8H e dk ntK fBy/VB^r[DKe gsk eo'.
dy
2
2
9H i/eo y = A sin px + B cos px, sK f;ZX eo' fe + py = 0 H
dx 2
2
2
d y 2a xy
3
3
10H i/eo x + y – 3axy = 0, sK f;ZX eo' fe = H
)ax −
2 ( dx y 23
dy 2 dy
2
2
11H i/eo y, z dk cbB j? sK z = ax sK f;ZX eo' fe = a H
dx 2 dz 2
2
2
–1
12H i/eo y = (sin x) , sK f;ZX eo' fe (1 – x ) y 2 – xy 1 = 2H
2
13H i/eo y = e tan − 1 x , sK f;ZX eo' fe (1 + x ) y 2 + (2x + 1) y 1 = 0H
2
dy 2
14H i/eo x+ y + y - x = , f;ZX eo' fe = H
c
dx 2 c 2
2
dy 6a 2
2
2
2
15H i/eo x + xy + y = a , sK f;ZX eo' fe + = 0 H
y
dx 2 (x + 2)
− 1 1 2log x 3 2log x dy
+
2
16H i/eo y= tan − 1 + tan − , sK f;ZX eo' fe = 0 H
−
+
1 2log x 1 6log x dx 2
2
22
2
2
2
2
2
17H i/eo p = a cos θ + b sin θ, sK f;ZX eo' fe d p + p = ab H
dθ 2 p 3
2
2
18H i/eo y= e a sin − 1 x , sK f;ZX eo' fe (1 – x ) y 2 – xy 1 – a y = 0H
2
-1
2
19H i/eo y = sin (m sin x), sK f;ZX eo' fe (1 – x ) y 2 – xy 1 + m y = 0H
5H2 ;koKP (Summary)
dy
• i/eo y, x dk e'Jh cbB j't/ sK x d/ ;kg/y y dk fBy/VB^r[DKe Gkt th x dk cbB
dx
dy d dy
j[zdk j? fi;dk fco s'A fBy/VB ehsk ik ;edk j?. d/ fBy/VB r[DKe B{z y
dx dx dx
dk d{ik fBy/VB^ r[DKe efjzd/ jB.
98 LOVELY PROFESSIONAL UNIVERSITY