Page 370 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_ENGLISH
P. 370

Unit 29: Methods of Point Estimation and Interval Estimation



            Solving, we get m  =  x . Again,                                                         Notes
                          0
                           ∂ ⎡  2 logL ⎤    nx    nx
                           ⎢      ⎥     =   −  2  =   −  2  =  −  n   which is negative.
                           ⎢  ∂ m 2  ⎦  ⎥ ⎣  m = m 0  m 0  x  x

            This shows that log L is maximum at m = m  =  x . That is the m.l.e. of m is m  =  x , the sample mean.
                                              0                         0
            Example 2: Find the maximum likelihood estimator of the variance   σ 2   of a Normal population
            N ( μ σ,  2 ) , when the parameter  μ  is known. Show that this estimator is unbiased.

            Solution: The p.d.f. of Normal distribution is

                                            1    (  − x  μ  ) −  2  σ /2  2
                               fx    2 ) =      e        ; ( ∞  −  < x  +  ∞ <  )
                                ( ,μ σ,
                                          σ   π 2
            The logarithm (to the base e) of the likelihood function L is
                                           n
                                                 (∑
                                                     ,
                                   log L =   log fx  , μ σ 2  ) i
                                          i = 1
                                            ⎡       1        (  x  −  μ 2  ⎤
                                        =  ∑ ⎢  ⎢  ⎣  σ −log  2  ( log  )2x  −  2 σ 2  ) i  ⎥−  ⎥  ⎦



                                            n       n        ∑  (  − x  μ ) i  2
                                        =  −   σ − log  2  ( log  )2x  −
                                            2       2          2 σ 2
            Differentiating partially with respect to  σ ,
                                             2

                                ∂  log L  −  n  +  ( ∑  x  −  μ ) i  2
                               ( ∂σ 2 )  =  2 σ 2  ( 2  2 ) σ  2


            The m.l.e. of  σ 2   is obtained by solving

                               ∑  ( n  − x  μ ) i  2
                        −    +          = 0
                          2 σ  2  2 σ  0 4


                                           n  (  x  − μ ) i  2
                ∴                   σ 0 2  =  ∑
                                          i = 1  n

                             ⎡      ⎤
                             ∂ ⎢  2  log L ⎥  −n
            It can be shown that  ⎢  2  ⎥   =   2 σ 4
                             ⎢  ⎣  ( ∂σ 2 )  ⎥  σ=σ 2  0  0
                                      2 ⎦

            which is negative. Thus the maximum likelihood estimator of  σ  is
                                                               2

                                    σ 0 2  =  ∑ (  x  − n μ ) i  2  , (  μ  known)




                                             LOVELY PROFESSIONAL UNIVERSITY                                      365
   365   366   367   368   369   370   371   372   373   374   375