Page 154 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 154

vFkZ'kkL=k esa lkaf[;dh; fof/;k¡




                    uksV                                   2 06 640 + ,  ,  20608 −  226800  448
                                                        =                           =
                                                               2 27 816 −  226800      1016
                                                                ,
                                                                  ,
                                                        =  .44  = + .66
                                  vUrj jhfr }kjk lglEcUèk (Correlation by Difference Method)

                                  nksuksa Jsf.k;ksa osQ pj ewY;ksa osQ vUrj osQ vkèkkj ij Hkh lglEcUèk xq.kkad dh x.kuk dh tk ldrh gSA bldh
                                  izfØ;k fuEu izdkj gSμ
                                     (i) loZizFke x ,oa y Js.kh osQ pj ewY;ksa dk vUrj Kkr dj bu vUrjksa osQ ekè; ls budk fopyu Kkr dj
                                                  2
                                        budk oxZ Σd  Kkr dj fy;k tkrk gSA
                                                        D = x – yd = D – D

                                  ;gk¡ D = D dk vadxf.krh; ekè; gSA
                                                                                                   2
                                                                                                         2
                                     (ii) x ,oa y pj ewY;ksa esa ls buosQ lEcfUèkr ekè; ls fopyu Kkr dj budk oxZ Σx  ,oa Σy  dj fy;k
                                        tkrk gS]
                                                        x = (X – X )  Y = (Y –  Y )
                                    (iii) fuEu lw=k osQ iz;ksx }kjk lglEcUèk xq.kkad Kkr fd;k tkrk gSμ
                                                           Σ  2  Σx +  2  Σy −  d 2
                                                        r =                                              ---izFke lw=k
                                                             2  Σ  2  Σx ×  y 2

                                                           σ  2  +  σ  2  −  s  2
                                  or                    r =   x   y    x −  y                           ---f}rh; lw=k
                                                               2. σσ .  y
                                                                  x
                                  ;gk¡ σ x – y 2  dk rkRi;Z x ,oa y Js.kh osQ pj ewY;ksa osQ vUrj osQ izlj.k ls gSA
                                  mnkgj.k (Illustration) 8: vUrj jhfr }kjk lglEcUèk xq.kkad dh x.kuk dhft,μ
                                  K Series :    3       5      7      9      11     13      15     17
                                  Y Series :    1       3      5      7      9      11      13     15
                                  gy (Solution):
                                                        vUrj jhfr }kjk lglEcU/ xq.kkad dh x.kuk
                                                                  D   = 2            X   = 10       Y   = 8
                                      X       Y     D = (X – Y)  d = D –  D  d 2   x = X –  X  x 2  Y = Y –  Y  y 2
                                      3       1         2           0        0        –  7     49     –  7    49
                                      5       3         2           0        0        –  5     25     –  5    25
                                      7       5         2           0        0        –  3     9      –  3     9
                                      9       7         2           0        0        –  1     1      –  1     1
                                     11       9         2           0        0        + 1      1      + 3      1
                                     13      11         2           0        0        + 3      9      + 5      9
                                     15      13         2           0        0        + 5      25     + 7     25
                                     17      15         2           0        0        + 7      49     + 1     49
                                                                                              168            168
                                   ΣX = 80  ΣY = 64   ΣD = 16              Σd  = 0            Σx 2           ΣY 2
                                                                             2






        148                               LOVELY PROFESSIONAL UNIVERSITY
   149   150   151   152   153   154   155   156   157   158   159