Page 154 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 154
vFkZ'kkL=k esa lkaf[;dh; fof/;k¡
uksV 2 06 640 + , , 20608 − 226800 448
= =
2 27 816 − 226800 1016
,
,
= .44 = + .66
vUrj jhfr }kjk lglEcUèk (Correlation by Difference Method)
nksuksa Jsf.k;ksa osQ pj ewY;ksa osQ vUrj osQ vkèkkj ij Hkh lglEcUèk xq.kkad dh x.kuk dh tk ldrh gSA bldh
izfØ;k fuEu izdkj gSμ
(i) loZizFke x ,oa y Js.kh osQ pj ewY;ksa dk vUrj Kkr dj bu vUrjksa osQ ekè; ls budk fopyu Kkr dj
2
budk oxZ Σd Kkr dj fy;k tkrk gSA
D = x – yd = D – D
;gk¡ D = D dk vadxf.krh; ekè; gSA
2
2
(ii) x ,oa y pj ewY;ksa esa ls buosQ lEcfUèkr ekè; ls fopyu Kkr dj budk oxZ Σx ,oa Σy dj fy;k
tkrk gS]
x = (X – X ) Y = (Y – Y )
(iii) fuEu lw=k osQ iz;ksx }kjk lglEcUèk xq.kkad Kkr fd;k tkrk gSμ
Σ 2 Σx + 2 Σy − d 2
r = ---izFke lw=k
2 Σ 2 Σx × y 2
σ 2 + σ 2 − s 2
or r = x y x − y ---f}rh; lw=k
2. σσ . y
x
;gk¡ σ x – y 2 dk rkRi;Z x ,oa y Js.kh osQ pj ewY;ksa osQ vUrj osQ izlj.k ls gSA
mnkgj.k (Illustration) 8: vUrj jhfr }kjk lglEcUèk xq.kkad dh x.kuk dhft,μ
K Series : 3 5 7 9 11 13 15 17
Y Series : 1 3 5 7 9 11 13 15
gy (Solution):
vUrj jhfr }kjk lglEcU/ xq.kkad dh x.kuk
D = 2 X = 10 Y = 8
X Y D = (X – Y) d = D – D d 2 x = X – X x 2 Y = Y – Y y 2
3 1 2 0 0 – 7 49 – 7 49
5 3 2 0 0 – 5 25 – 5 25
7 5 2 0 0 – 3 9 – 3 9
9 7 2 0 0 – 1 1 – 1 1
11 9 2 0 0 + 1 1 + 3 1
13 11 2 0 0 + 3 9 + 5 9
15 13 2 0 0 + 5 25 + 7 25
17 15 2 0 0 + 7 49 + 1 49
168 168
ΣX = 80 ΣY = 64 ΣD = 16 Σd = 0 Σx 2 ΣY 2
2
148 LOVELY PROFESSIONAL UNIVERSITY