Page 149 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 149

bdkbZ—9% lglacaèk% ifjHkk"kk] izdkj ,oa vFkZ'kkfL=k;ksa dh iz;qDr fof/;k¡




            gy (Solution): iz'u esa dksfVØe fn, gq, gSa] vr% dksfVØe fuèkkZj.k dh vko';drk ugha gSA   uksV
                                     Øekarj lglEcUèk xq.kkad dh x.kuk

                    vFkZ'kkL=k          bfrgkl            dksfV&vUrj            D 2
                       X                  Y                  D
                       1                  2                  –  1                1
                       2                  4                  –  2                4
                       3                  1                   2                  4
                       4                  5                  –  1                1
                       5                  3                   2                  4
                       6                  9                  –  3                9
                       7                  7                   0                  0
                       8                 10                  –  2                4
                       9                  6                   3                  9
                      10                  8                   2                  6

                                                                              ΣD  = 40
                                                                                2
                                       6ΣD 2
                               ρ = 1 –
                                         2
                                       (
                                     NN −   1)
                                        6 ×  40      240
                                                  1
                                 = 1 –          =−
                                      10 100 −(  1)  990
                                 = 1 – .24 = + .76 approx.
            vFkkZr~ mPp ifjek.k dk èkukRed lglEcUèk gSA
            laxkeh fopyu lglEcUèk xq.kkad (Correlation Coefficient of Concurrent Deviation)

            tc lglEcUèk dh osQoy fn'kk Kkr djuh gks rks laxkeh fopyu jhfr dk iz;ksx fd;k tkrk gS] bl jhfr esa
            izR;sd in&ewY; dk fiNys ewY; ls fopyu dh fn'kk (èkukRed vFkok Í.kkRed) Kkr dj mlosQ vkèkkj ij
            lglEcUèk xq.kkad dh x.kuk dh tkrh gSA x ,oa y Js.kh osQ fopyu laxkeh gksus ij èkukRed lglEcUèk ,oa
            izfrxkeh gksus ij Í.kkRed lglEcUèk gksrk gSA
            laxkeh fopyu xq.kkad Kkr djus dh izfØ;kμlaxkeh fopyu xq.kkad fuEu izdkj Kkr fd;k tkrk gSμ
               (i) x ,oa y Js.kh osQ lHkh in&ewY;ksa dk fiNys ewY; ls fopyu dh fn'kk Kkr dh tkrh gS] tSls izFke ewY;
                  100 gS ,oa nwljk ewY; 100 ls vfèkd gS rks fopyu dh fn'kk èkukRed (+) ,oa nwljs ewY; osQ 100 ls
                  de gksus ij fopyu dh fn'kk Í.kkRed (–) gksxhA

              (ii) èkukRed fopyu osQ fy, + fpÉ ,oa Í.kkRed fopyu osQ fy, – fpÉ dk iz;ksx fd;k tkrk gS] ;fn
                  fdUgha nks in&ewY;ksa dk fopyu 'kwU; gS rks mlosQ fy, = fpÉ dk iz;ksx fd;k tkrk gSA
              (iii) x ,oa y osQ fopyu fpÉksa dks vkil esa xq.kk djosQ xq.kk ls izkIr fpUgksa esa ls èkukRed fpÉksa dks fxudj
                  mudh la[;k Kkr dj yh tkrh gS] bUgsa laxkeh fopyu dgk tkrk gSA
              (iv) fuEu lw=k dk iz;ksx fd;k tkrk gSμ








                                                LOVELY PROFESSIONAL UNIVERSITY                                   143
   144   145   146   147   148   149   150   151   152   153   154