Page 149 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 149
bdkbZ—9% lglacaèk% ifjHkk"kk] izdkj ,oa vFkZ'kkfL=k;ksa dh iz;qDr fof/;k¡
gy (Solution): iz'u esa dksfVØe fn, gq, gSa] vr% dksfVØe fuèkkZj.k dh vko';drk ugha gSA uksV
Øekarj lglEcUèk xq.kkad dh x.kuk
vFkZ'kkL=k bfrgkl dksfV&vUrj D 2
X Y D
1 2 – 1 1
2 4 – 2 4
3 1 2 4
4 5 – 1 1
5 3 2 4
6 9 – 3 9
7 7 0 0
8 10 – 2 4
9 6 3 9
10 8 2 6
ΣD = 40
2
6ΣD 2
ρ = 1 –
2
(
NN − 1)
6 × 40 240
1
= 1 – =−
10 100 −( 1) 990
= 1 – .24 = + .76 approx.
vFkkZr~ mPp ifjek.k dk èkukRed lglEcUèk gSA
laxkeh fopyu lglEcUèk xq.kkad (Correlation Coefficient of Concurrent Deviation)
tc lglEcUèk dh osQoy fn'kk Kkr djuh gks rks laxkeh fopyu jhfr dk iz;ksx fd;k tkrk gS] bl jhfr esa
izR;sd in&ewY; dk fiNys ewY; ls fopyu dh fn'kk (èkukRed vFkok Í.kkRed) Kkr dj mlosQ vkèkkj ij
lglEcUèk xq.kkad dh x.kuk dh tkrh gSA x ,oa y Js.kh osQ fopyu laxkeh gksus ij èkukRed lglEcUèk ,oa
izfrxkeh gksus ij Í.kkRed lglEcUèk gksrk gSA
laxkeh fopyu xq.kkad Kkr djus dh izfØ;kμlaxkeh fopyu xq.kkad fuEu izdkj Kkr fd;k tkrk gSμ
(i) x ,oa y Js.kh osQ lHkh in&ewY;ksa dk fiNys ewY; ls fopyu dh fn'kk Kkr dh tkrh gS] tSls izFke ewY;
100 gS ,oa nwljk ewY; 100 ls vfèkd gS rks fopyu dh fn'kk èkukRed (+) ,oa nwljs ewY; osQ 100 ls
de gksus ij fopyu dh fn'kk Í.kkRed (–) gksxhA
(ii) èkukRed fopyu osQ fy, + fpÉ ,oa Í.kkRed fopyu osQ fy, – fpÉ dk iz;ksx fd;k tkrk gS] ;fn
fdUgha nks in&ewY;ksa dk fopyu 'kwU; gS rks mlosQ fy, = fpÉ dk iz;ksx fd;k tkrk gSA
(iii) x ,oa y osQ fopyu fpÉksa dks vkil esa xq.kk djosQ xq.kk ls izkIr fpUgksa esa ls èkukRed fpÉksa dks fxudj
mudh la[;k Kkr dj yh tkrh gS] bUgsa laxkeh fopyu dgk tkrk gSA
(iv) fuEu lw=k dk iz;ksx fd;k tkrk gSμ
LOVELY PROFESSIONAL UNIVERSITY 143