Page 147 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 147

bdkbZ—9% lglacaèk% ifjHkk"kk] izdkj ,oa vFkZ'kkfL=k;ksa dh iz;qDr fof/;k¡




                                              Σ fdxdy
                                  N.Σ         ( fdx . Σ −  fdy )                                      uksV
                        r =
                                                              2
                             N Σ
                            [.     2  ( fdx ) ] [ .Σ  2  N  2  ( fdy ) ]
                                       Σfdx −
                                                         Σfdy −
                                   79 ×− 99 − ( 48 × −  34)
                          =
                                                             2
                                           2
                              79 × [  254 −  ( 48)] [ 79 ×  188 −  ( −  34)]
                                    −     + 7821 1632
                          =
                             [ 20066 −    ] [     − 2304 14852  1156]
                                − 6189
                          =
                             17762 × 13696
                                              1
                          = – Antilog [log .6189 –   (log .17762 + log .13696)]
                                              2
                                         1
                          = – A.L. [3.7916 –  (4.2495 + 4.1367)]
                                         2
                          = – A.L. [3.7916 – 4.1931]
                          = – A.L. [1.5985]
                          = – 0.3968 = – 0.4 approx
            vFkkZr~ Í.kkRed lglEcUèk gSA

            dkyZ fi;lZu osQ lglEcUèk xq.kkad dh ekU;rk,¡μdkyZ fi;lZu dk lglEcUèk xq.kkad rhu ekU;rkvksa ij
            vkèkkfjr gSμ
               (i) lglEcfUèkr lead Jsf.k;k¡ dbZ dkj.kksa ls izHkkfor gksrh gSa] vr% muesa lkekU;r;k (Normality) vk
                  tkrh gSA
              (ii) leadekykvksa dks izHkkfor djus okys LorU=k dkj.kksa esa dkj.k ifj.kke dk lEcUèk gksrk gS] dkj.k&ifj.kke
                  osQ lEcUèk osQ vHkko esa lglEcUèk dh mifLFkfr vFkZghu gksrh gSA
              (iii) lglEcfUèkr leadekykvksa esa js[kh; lEcUèk dh ifjdYiuk dh tkrh gS vFkkZr~ nksuksa in&;qXeksa ls
                  js[kkfp=k [khapus ij ,d ljy js[kk izkIr gksrh gSA
            dkyZ fi;lZu osQ lglEcUèk xq.kkad dh lhekμdkyZ fi;lZu dk lglEcUèk xq.kkad gj le; + 1 ,oa – 1 dh
            lhek esa jgrk gSA laosQrk{kjksa osQ :i esaμ
            r > ± 1 ;k r ≤ ± 1

            r > 1 = r, ± 1 ls vfèkd dHkh ugha gks ldrk gSA
            r ≤ 1 = r, ± 1 ls de ;k cjkcj gksxkA

            dksfV&vUrj lglEcUèk xq.kkad (Rank Correlation)

            pkYlZ fLi;jeSu us lglEcUèk Kkr djus dh bl fofèk dk izfriknu fd;k bl fofèk dks dksfV&vUrj ;k Øekurj
            jhfr (Ranking Difference Method) vFkok vuqifLFkfr jhfr (Ranking Method) dgk tkrk gSA
            ;g jhfr O;fDrxr Js.kh esa ,slh ifjfLFkfr;ksa osQ fy, lglEcUèk Kkr djus osQ fy, mi;qDr gS] ftuosQ
            la[;kRed eki osQ LFkku osQoy Øe (Order) fuf'pr djuk gh lEHko gks] tSls lqUnjrk] cqf¼eÙkk] vkfn
            xq.kkRed rF;A ,slh ifjfLFkfr;ksa dks izFke] f}rh;] r`rh; vkfn dksfV Øe (Rank) nsdj muosQ vkèkkj ij
            lglEcUèk xq.kkad Kkr fd;k tkrk gSA





                                                LOVELY PROFESSIONAL UNIVERSITY                                   141
   142   143   144   145   146   147   148   149   150   151   152