Page 147 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 147
bdkbZ—9% lglacaèk% ifjHkk"kk] izdkj ,oa vFkZ'kkfL=k;ksa dh iz;qDr fof/;k¡
Σ fdxdy
N.Σ ( fdx . Σ − fdy ) uksV
r =
2
N Σ
[. 2 ( fdx ) ] [ .Σ 2 N 2 ( fdy ) ]
Σfdx −
Σfdy −
79 ×− 99 − ( 48 × − 34)
=
2
2
79 × [ 254 − ( 48)] [ 79 × 188 − ( − 34)]
− + 7821 1632
=
[ 20066 − ] [ − 2304 14852 1156]
− 6189
=
17762 × 13696
1
= – Antilog [log .6189 – (log .17762 + log .13696)]
2
1
= – A.L. [3.7916 – (4.2495 + 4.1367)]
2
= – A.L. [3.7916 – 4.1931]
= – A.L. [1.5985]
= – 0.3968 = – 0.4 approx
vFkkZr~ Í.kkRed lglEcUèk gSA
dkyZ fi;lZu osQ lglEcUèk xq.kkad dh ekU;rk,¡μdkyZ fi;lZu dk lglEcUèk xq.kkad rhu ekU;rkvksa ij
vkèkkfjr gSμ
(i) lglEcfUèkr lead Jsf.k;k¡ dbZ dkj.kksa ls izHkkfor gksrh gSa] vr% muesa lkekU;r;k (Normality) vk
tkrh gSA
(ii) leadekykvksa dks izHkkfor djus okys LorU=k dkj.kksa esa dkj.k ifj.kke dk lEcUèk gksrk gS] dkj.k&ifj.kke
osQ lEcUèk osQ vHkko esa lglEcUèk dh mifLFkfr vFkZghu gksrh gSA
(iii) lglEcfUèkr leadekykvksa esa js[kh; lEcUèk dh ifjdYiuk dh tkrh gS vFkkZr~ nksuksa in&;qXeksa ls
js[kkfp=k [khapus ij ,d ljy js[kk izkIr gksrh gSA
dkyZ fi;lZu osQ lglEcUèk xq.kkad dh lhekμdkyZ fi;lZu dk lglEcUèk xq.kkad gj le; + 1 ,oa – 1 dh
lhek esa jgrk gSA laosQrk{kjksa osQ :i esaμ
r > ± 1 ;k r ≤ ± 1
r > 1 = r, ± 1 ls vfèkd dHkh ugha gks ldrk gSA
r ≤ 1 = r, ± 1 ls de ;k cjkcj gksxkA
dksfV&vUrj lglEcUèk xq.kkad (Rank Correlation)
pkYlZ fLi;jeSu us lglEcUèk Kkr djus dh bl fofèk dk izfriknu fd;k bl fofèk dks dksfV&vUrj ;k Øekurj
jhfr (Ranking Difference Method) vFkok vuqifLFkfr jhfr (Ranking Method) dgk tkrk gSA
;g jhfr O;fDrxr Js.kh esa ,slh ifjfLFkfr;ksa osQ fy, lglEcUèk Kkr djus osQ fy, mi;qDr gS] ftuosQ
la[;kRed eki osQ LFkku osQoy Øe (Order) fuf'pr djuk gh lEHko gks] tSls lqUnjrk] cqf¼eÙkk] vkfn
xq.kkRed rF;A ,slh ifjfLFkfr;ksa dks izFke] f}rh;] r`rh; vkfn dksfV Øe (Rank) nsdj muosQ vkèkkj ij
lglEcUèk xq.kkad Kkr fd;k tkrk gSA
LOVELY PROFESSIONAL UNIVERSITY 141