Page 151 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 151

bdkbZ—9% lglacaèk% ifjHkk"kk] izdkj ,oa vFkZ'kkfL=k;ksa dh iz;qDr fof/;k¡




                                                                                                      uksV


                              nks cjkcj fpÉksa dks xq.kk osQ le; laxkeh fpÉ eku fy;k tkrk gSA lglEcUèk Kkr
                              djus dh laxkeh fopyu jhfr ljy gS] blls vYidkyhu mPpkopuksa esa lglEcUèk
                              Kkr gks tkrk gS] blls lglEcUèk dh fn'kk dk gh Kku gks ikrk gS bldh la[;kRed
                              eki lEHko ugha gS] vr% bldk iz;ksx cgqr de fd;k tkrk gSA

            vU; jhfr;k¡μlglEcUèk Kkr djus dh xf.krh; jhfr;ksa esa dkyZ fi;lZu }kjk izfrikfnr jhfr vfèkd yksdfiz;
            gSA mDr jhfr;ksa osQ vfrfjDr oqQN vU; jhfr;ksa }kjk Hkh lglEcUèk xq.kkad dh x.kuk dh tk ldrh gS] buesa eq[;
            U;wure oxZ jhfr gSA
            U;wure oxZ jhfr }kjk lglEcUèk (Correlation by the Method of Least Squares)

            U;wure oxZ fofèk osQ vkèkkj ij [khaph xbZ loksZÙke js[kk ij (Line of Best Fit) ;g fofèk vkèkkfjr gSA bl fofèk
            esa fn, x, x osQ ewY;ksa osQ fy, y osQ loZJs"B lEHkkfor ewY; Kkr dj lglEcUèk Kkr fd;k tkrk gSA loksZÙke
            js[kk ls izkIr fopyuksa osQ oxZ dk ;ksx Kkr fopyuksa osQ oxZ osQ ;ksx ls gj le; U;wure gksrk gS] vr% bls
            U;wure oxZ jhfr dgk tkrk gSA
            U;wure oxZ jhfr }kjk lglEcUèk Kkr djus dh izfØ;kμU;wure oxZ jhfr }kjk lglEcUèk xq.kkad fuEu izdkj
            Kkr fd;k tkrk gSμ
               (i) loZizFke ljy js[kk osQ lehdj.k dh lgk;rk ls x osQ fn, gq, ewY;ksa osQ fy, y osQ lEHkkfor ewY; (y )
                                                                                         c
                  Kkr fd, tkrs gSaμ
                  ljy js[kk dk lehdj.k : y = a + bx. bl lehdj.k osQ nks vpj (Constant) ewY; a ,oa b dk eku fuEu
                  nks izlkekU; lehdj.kksa }kjk Kkr fd;k tkrk gSμ
                                         Σy = Na + bΣx
                                        Σxy = Σxa + bΣx 2
              (ii) y osQ fn, gq, ewY;ksa esa ls y osQ lEHkkfor ewY;ksa dks ?kVk dj fopyu Kkr fd, tkrs gSaA
                                          d = y – y c
                                                            2
                                                       2
              (iii) izkIr fopyuksa dk oxZ djosQ mldk ;ksx Σ(y – y )  ;k Σd  Kkr dj fy;k tkrk gSA
                                                      c
              (iv) y Js.kh osQ okLrfod ewY;ksa osQ vkèkkj ij izlj.k Kkr fd;k tkrk gSμ
                                     Σ d 2
                                  2
                   Variance of y ;k σ =  N y
                                  y
              (v) loksZi;qDr js[kk izlj.k ftls vLi"VhÑr izlj.k (unexplained variance) Hkh dgrs gSa] fuEu izdkj Kkr
                  fd;k tkrk gSμ
                                             Σ(y −  y  ) 2
                                        S  =       c
                                          2
                                         y       N
                   2
                  Sy  dk oxZewy (S ) dks ^vuqeku dk izeki foHkze* (Standard error of the estimates) dgk tkrk gSA
                              y
              (vi) fuEu lw=k osQ iz;ksx }kjk lglEcUèk xq.kkad dh x.kuk dh tkrh gSμ
                                                S  2
                                        r =  1 −  y
                                                σ y 2






                                                LOVELY PROFESSIONAL UNIVERSITY                                   145
   146   147   148   149   150   151   152   153   154   155   156