Page 218 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 218
vFkZ'kkL=k esa lkaf[;dh; fof/;k¡
uksV Σfdx
X = Ax ± × ix
N
− 5
= 27.5 + × 5
50
= 27.5 – 0.5 = 27
Σfdy
Y = Ay ± × iy
N
− 16
= 22 + × 4
50
= 22 – 1.28 = 20.72
X = 27, Y = 20.72, bxy = .72
vr% X – 27 = .72 (Y – 20.72)
X – 27 = .72y – 14.92
X = .72y – 14.92 + 27
X = .72y + 12.08 ...(i)
Y dk X ij izrhixeu xq.kkad
L Σ fdx fdyO
.
Σ
iy N M Σ fdxdy − N P Q
byx = ix L Σ ( fdx O
2
)
2
N Σ M fdx − N P Q
− L 5 × − 16O
4 N M 16 − 50 Q P
= 5 L 5 O
2
M 25 − − ( ) P
N 50 Q
16)
4 ( 16 − .
= ×
5 ( 25 − .
0 5)
4 14 4
.
= ×
5 24 5
.
57 6
.
= = .47
.
122 5
Y dh X ij izrhixeu js[kk
Y – Y = bxy(X – X )
Y = 20.72, X = 27, byx = .47
Y – 20.72 = .47(X – 27)
Y – 20.72 = .47X – 12.69
Y = .47X – 12.96 + 20.72
Y = .47X + 8.03
iRuh (Y) dh vk;q 20 o"kZ gks rks ifr (X) dh vk;qμ
X = .72Y + 12.08
212 LOVELY PROFESSIONAL UNIVERSITY