Page 341 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 341
bdkbZ—23% dky Js.kh dh xzkfdd ,oa vFkZ &eè;d jhfr
izR;{k jhfr uksV
2
ΣY= Na + bΣX + cΣX + dΣX 3
2
ΣXY = aΣX + bΣX + cΣX + dΣX 4
3
ΣX Y= aΣX + bΣX + cΣX + dΣX 5
2
4
3
2
5
3
3
ΣX Y= aΣX + bΣX + cΣX + dΣX 6
4
y?kq jhfr (eè; o"kZ }kjk dkfyd fopyu)μ
ΣY= Na + cΣX 2
2
ΣXY = bΣX + dΣX 4
2
ΣX Y= bΣX + dΣX 4
2
4
ΣX Y= bΣX + dΣX 6
3
ijoy;μpØh; izo`fÙk fdls dgrs gSa\
y?kqx.kdh; ljy js[kk (Logarithmic Straight Line)μdky&Js.kh osQ fo'ys"k.k esa ;fn vkuqikfrd ifjorZuksa
dks Li"V djuk gks rks xf.krh; ljy js[kk osQ LFkku ij y?kqx.kdh; ljy js[kk dk vUok;kstu fd;k tkrk gSA
bls v¼Z&y?kqx.kdh; ;k ?kkrkadh; oØ (Semi-Logarithmic or Exponential Curve) Hkh dgk tkrk gSA
v¼Z&y?kqx.kdh; izo`fÙk ;k y?kqx.kdh; ljy js[kk dk vUok;kstu fuEu lehdj.k }kjk fd;k tkrk gSμ
Log. Y = Log. a + X Log. b
izlkekU; lehdj.k
izR;{k jhfr y?kq jhfr
Σ Log. Y = N Log. a + Log. bΣX ΣLog. Y = N Log. a
ΣXLog. Y = N Log. aΣX + Log. bΣX 2 ΣX Log. Y = Log. bΣX 2
izfØ;kμizo`fÙk ewY; Kkr djus dh izfØ;k fuEu izdkj gSμ
2
(i) X Js.kh osQ eè;&o"kZ ls fopyu Kkr dj fopyu dk oxZ dj mudk ;ksx (ΣX ) dj fy;k tkrk gSA
(ii) Y Js.kh osQ ewy leadksa osQ y?kqx.kd Kkr dj X osQ fopyuksa ls xq.kk dj fy;k tkrk gS (X Log. Y)A
(iii) izlkekU; lehdj.kksa ls Log. a rFkk Log. b dk ewY; Kkr dj fy;k tkrk gSA
(iv) Log. a rFkk Log. b osQ eku dks lehdj.k Log. Y = Log. a + X Log. b esa j[k dj izo`fÙk ewY; Kkr dj
fy, tkrs gSaA
( v) okLrfod izo`fÙk ewY; Kkr djus osQ fy, y?kqx.kdksa osQ izfry?kqx.kd Kkr dj fy, tkrs gSaA
Lo&ewY;kadu (Self Assessment)
1- lqnh?kZdkyhu izo`fÙk dk eki Kkr dhft,μ
1. fuEu leadksa ls izo`fÙk ekiu osQ fy, v¼Z&eè;d jhfr dk iz;ksx dhft,μ
o"kZ % 1970 1971 1972 1973 1974 1975 1976
mRiknu (fe- Vu) % 100 120 95 105 108 102 112
2. fuEukafdr ls U;wure dh oxZ jhfr nh?kZdkyhu izo`fÙk Kkr dhft,μ
o"kZ % 1961 1962 1963 1964 1965
dher (#-) % 83 92 71 90 169
LOVELY PROFESSIONAL UNIVERSITY 335