Page 338 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 338
vFkZ'kkL=k esa lkaf[;dh; fof/;k¡
uksV
fp=k 23-6μU;wure oxZ jhfr }kjk izo`fÙk&fu/kZj.k
y?kq jhfrμU;wure oxZ jhfr }kjk izo`fÙk ewY; y?kq jhfr }kjk fuEu izdkj Kkr fd, tk ldrs gSaμ
(i) eè; oxZ dks 'kwU; ekudj o"kks± osQ fopyu Kkr fd, tkrs gSaA ,sls le; ΣX dk ewY; 'kwU; gks
tkrk gSA
(ii) fopyuksa dk oxZ rFkk ΣXY Kkr dj fy, tkrs gSaA
(iii) inksa dk vadxf.krh; ekè; Kkr dj eè; oxZ osQ izo`fÙk ewY; osQ LFkku ij fy[kk tkrk gSA
(iv) vpj ewY; a rFkk b dk ewY; fuEu izdkj Kkr fd;k tkrk gSμ
ΣY ΣXY
a = ; b =
N ΣX 2
(v) vUr esa ljy js[kk osQ lehdj.k Y = a + bX dh lgk;rk ls izo`fÙk ewY; Kkr dj fy, tkrs gSaA
izo`fÙk ewY; dh x.kuk (y?kq jhfr)
o"kZ mRiknu (Vuksa esa) le; fopyu X 2 XY izo`fÙk ewY;
Y 1973 = 0 (Y = a + bX)
X
1970 40 – 3 9 – 120 45 + (1 × – 3) = 42
1971 45 – 2 4 – 90 45 + (1 × – 2) = 43
1972 46 – 1 1 – 46 45 + (1 × – 1) = 44
1973 41 0 0 0 45 + (1 × 0) = 45
1974 48 1 1 48 45 + (1 × 1) = 46
1975 49 2 4 98 45 + (1 × 2) = 47
1976 46 3 9 138 45 + (1 × 3) = 48
ΣY = 315 ΣX = 0 28 ΣX 2 28 ΣXY ΣY = 315
c
ΣY ΣXY
a = ; b =
N ΣX 2
315 28
a = = 45 ; b = = 1
7 28
315
vadxf.krh; ekè; = = 45
7
tc inksa dh la[;k le (even) (8, 10, 12,... vkfn) gks rks y?kq jhfr dk iz;ksx dfBu gks tkrk gSA ,sls le; ekè;
nks o"kks± osQ chp esa vkrk gSA eè; fcUnq dks 'kwU; ekudj fopyu Øe'k%μ.5, – 1.5, – 2.5, rFkk + .5, + 1.5, +
332 LOVELY PROFESSIONAL UNIVERSITY