Page 337 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 337

bdkbZ—23% dky Js.kh dh xzkfdd ,oa vFkZ &eè;d jhfr




                                    ΣY = Na + bΣX                                                     uksV
                                 ΣXY = aΣX + bΣX 2
            mnkgj.k (Illustration) 5. U;wure oxZ fof/ osQ iz;ksx }kjk fuEu leadksa ls nh?kZdkyhu izo`fÙk ewY;ksa dh x.kuk
            dhft,μ
            o"kZ         :   1970     1971     1972     1973      1974     1975     1976
            mRiknu (Vu esa) :  40      45       46       41        48       49       46
                                                   2
            mnkgj.k (Solution):  fn, gq, leadksa ls ΣX, ΣY, ΣX  rFkk ΣXY Kkr dj izlkekU; lehdj.kksa osQ iz;ksx }kjk
            ‘a’ rFkk ‘b’ vpj ewY;ksa dk ewY; Kkr dj izo`fÙk dh x.kuk dh tk,xhA

                                 izo`fÙk ewY; dk ifjdyu (U;wure oxZ jhfr)

                 o"kZ    mRiknu (Vuksa esa)  X       X 2         XY           izo`fÙk ewY;
                              Y                                              a + bX = Y c
               1970           40          1           1          40          41 + 1 = 42
               1971           45          2           4          90          41 + 2 = 43
               1972           46          3           9          138         41 + 3 = 44
               1973           41          4          16          164         41 + 4 = 45
               1974           48          5          25          240         41 + 5 = 46
               1975           49          6          36          294         41 + 6 = 47
               1976           46          7          49          322         41 + 7 = 48
                            315 ΣY      28 ΣX      140 ΣX 2   1288 ΣXY        ΣY  = 315
                                                                                c
                                   ΣY= Na + bΣX                                        ...(i)
                                  ΣXY = aΣX + bΣX 2                                    ...(ii)
            lehdj.k esa ewY; j[kus ijμ
                                   315 = 7a + 28b                                      ...(i)

                                  1288 = 28a + 140b                                    ...(ii)
            lehdj.k (i) dks pkj ls xq.kk djosQ lehdj.k (ii) esa ls ?kVkus ijμ
                                  1288 = 28a+ 140b
                                  1260 = 28a + 112b
                                 –      –       –
                                    28 = 28b
            ∴                        b = 1
            lehdj.k (i) esa b dk eku j[kus ijμ
                          315 = 7a + 28b  or    315 = 7a + 28
                          315 – 28 = 7a  or     287 = 7a
                          a = 41 ∴  a = 41 rFkk  b = 1

            ljy js[kk osQ lehdj.k Y = a + bX osQ vk/kj ij Kkr izo`fÙk ewY; Øe'k% 42, 43, 44, 45, 46, 47, 48 gksaxsA ewy
            leadksa ,oa izo`fÙk ewY;ksa dks fcUnq js[kk i=k ij fuEu izdkj izkafdr fd;k tk,xkμ








                                                LOVELY PROFESSIONAL UNIVERSITY                                   331
   332   333   334   335   336   337   338   339   340   341   342