Page 336 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 336

vFkZ'kkL=k esa lkaf[;dh; fof/;k¡




                    uksV              (iii) ewy leadksa dks izkafdr djus ls ;fn mÙky (Convex) oØ izkIr gks rks py&ekè;ksa ls izkIr oØ mlls
                                          Åij gksxkA
                                      (iv) ;fn py&ekè; vkSj fu;fer mPpkopuksa dh vof/ leku gS rks ;s ekè; fu;fer mPpkopuksa dks
                                          iw.kZ :i ls nwj dj nsrs gSaA
                                       (v) py&ekè;ksa ls vfu;fer mPpkopuksa dks de fd;k tk ldrk gS] nwj ughaA
                                  xq.k&nks"kμbl jhfr osQ vè;;u ls ;g Li"V gks tkrk gS fd bl jhfr }kjk izkIr ifj.kke vf/d lgh gksrs gSa]
                                  D;ksafd bu ij O;fDrxr i{kikr dh Hkkouk dk izHkko ugha iM+rk gSA bl jhfr }kjk izo`fÙk Kkr djus dh izfØ;k
                                  dks le>uk Hkh ljy gSA bu xq.kksa osQ gksrs gq, Hkh bl jhfr esa fuEu nks"k ik, tkrs gSaμ

                                       (i) py&ekè;ksa dh vof/ dk fu/kZj.k djuk dfBu dk;Z gS] ;fn mi;qDr jhfr ls py&ekè;ksa dh vof/
                                          dk fu/kZj.k ugha fd;k x;k rks ifj.kke vokLrfod gksrs gSaA

                                       (ii) bl jhfr dk iz;ksx fu;fer mPpkopuksa okyh Js.kh osQ fy, gh mi;qDr gS D;ksafd py ekè;ksa ls
                                          vfu;fer mPpkopuksa dks nwj ugha fd;k tk ldrk gSA
                                      (iii) izo`fÙk osQ eki esa vkjEHk osQ ,oa vUr osQ oqQN izo`fÙk ewY; NqV tkrs gSaA
                                   (4)  U;wure oxZ jhfr (Method of Least Squares)μU;wure oxZ jhfr }kjk nh?kZdkyhu izo`fÙk dk vuqeku
                                        xf.krh; lehdj.kksa osQ vk/kj ij yxk;k tkrk gSA bl jhfr esa U;wure oxZ dh ekU;rk osQ vkèkkj ij
                                        loksZi;qDr js[kk (Line of Best Fit) [khaph tkrh gSA loksZi;qDr js[kk nks izdkj dh gks ldrh gSA
                                          (i) ljy js[kk (Straight Line)
                                          (ii) ijoyf;d oØ (Parabolic Curve)

                                  U;wure oxZ jhfr nks mís';ksa dks iwjk djrh gSμ
                                    (i)  voyksfdr ewY;ksa osQ loksZi;qDr js[kk ls mnxz fopyuksa dk ;ksx 'kwU; gksrk gSA
                                                       Σ(Y – Y ) = 0
                                                             c
                                   (ii)  loksZi;qDr js[kk ls Kkr fopyuksa osQ oxZ dk ;ksx vU; fdlh ljy js[kk ls Kkr fopyuksa osQ oxZ dh
                                        rqyuk esa U;wure gksrk gSA
                                                       Σ(Y – Y )  = 0 U;wure (Minimum)
                                                               2
                                                             c
                                  nwljh fo'ks"krk osQ dkj.k gh bl jhfr dks U;wure oxZ jhfr dgk tkrk gSA
                                  Y laosQrk{kj dk rkRi;Z vkfJr pj osQ ewy leadksa ls gSA
                                  Y  laosQrk{kj dk rkRi;Z vkfJr pj osQ U;wure oxZ jhfr }kjk Kkr laxfBr ewY;ksa ls gSA
                                   c
                                  ljy js[kh; izo`fÙk (Straight Line Trend)μU;wure oxZ jhfr }kjk ljy js[kh; izo`fÙk ljy js[kk osQ fuEu
                                  lehdj.k }kjk Kkr dh tkrh gSμ
                                                       Y = a + bX

                                  lehdj.k esaμ
                                               Y = izo`fÙk ewY; (Trend Value)

                                              X = le; bdkbZ (Unit of Time)
                                         a rFkk b = vpj ewY; (Constants)
                                  vpj ewY; a rFkk b esa ls ‘a’ vUr%[k.M (Intercept) gS rFkk ‘b’ izo`fÙk js[kk osQ <yku (Slope) dks O;Dr djrk
                                  gSA izo`fÙk ewY; Kkr djus osQ fy, a rFkk b vpj ewY;ksa dk ifjdyu djuk gksrk gSA a rFkk b vpj ewY;ksa dk
                                  ifjdyu fuEu izlkekU; lehdj.kksa dh lgk;rk ls fd;k tkrk gSμ



        330                               LOVELY PROFESSIONAL UNIVERSITY
   331   332   333   334   335   336   337   338   339   340   341