Page 75 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 75

bdkbZμ5 % ekè;] ekfè;dk rFkk cgqyd osQ vuqiz;ksx




                                    f −  f                    f −  f                                  uksV
                          Z = l +  f 2  1  −  1  f −  0  0  f 2  ×  i  or  Z = l +  f 2  1  1 −  f −  0  0  f 2  ×  l − (  2  l )
                                                                              1
                              1
                                                         1
                   Z = cgqyd ewY; (Value of mode)
                   l  = cgqyd oxZ dh fupyh lhek (lower limit of the modal group)
                    1
                   l  = cgqyd oxZ dh Åijh lhek (upper limit of the modal group)
                    2
                   f  = cgqyd oxZ dh vko`fÙk (freqency of modal class)
                    1
                   f  = cgqyd oxZ ls rqjUr igys okys oxZ vFkkZr~ y?kqrj oxZ dh vko`fÙk  (frequency of the
                    0
                      premodal class)
                   f  = cgqyd oxZ ls rqjUr ckn vkus okys vFkkZr~ mPprj oxZ dh vko`fÙk (frequency of the post
                    2
                      modal class)
                    i = cgqyd oxZ dk foLrkj (magnitude of the modal class)

            lw=k dk vk/kjμ;g lw=k bl ekU;rk ij vk/kfjr gS fd cgqyd ewY; cgqyd oxZ osQ fudVorhZ oxks± dh
            vko`fÙk;ksa ls izHkkfor gksrk gSA ;fn fiNys oxZ dh vko`fÙk] vxys oxZ dh vko`fÙk dh vis{kk vf/d gS rks
            cgqyd ewY; cgqyd oxZ dh fupyh lhek osQ vf/d fudV gksxkA blosQ foijhr ;fn vxys oxZ dh vko`fÙk
            vf/d gS rks cgqyd oxZ dh Åijh lhek osQ vf/d fudV gksxkA

            lw=k dk nwljk :iμcgqyd osQ lw=k dks vko`fÙk;ksa osQ vUrj osQ :i esa fuEu izdkj fy[kk tkrk gSμ
                              I                              II

                    fupyh (v/j) lhek esa tksM+dj   Åijh (vij) lhek esa ls ?kVkdj
                                 Δ                             Δ
                         Z = l +  1   × i             Z = l −   2   ×  i
                           1
                                                         2
                              Δ  1  + Δ  2                   Δ  1  + Δ  2
                   ;gk¡ Δ  = f  – f 0   rFkk  Δ  = f  – f 2
                                               2
                                                  1
                        1
                           1
            l  o l  cgqyd oxZ dh fupyh ,oa Åijh lhek gSaA
            1
               2
            mnkgj.k (Illustration) 12: fuEu Js.kh dk cgqyd ifjdfyr dhft,μ
              oxZ vUrjky        4-8   8-12  12-16  16-20  20-24  24-28  28-32  32-36  36-40
              vko`fÙk           10     12    16     14     10     8     17     5     4

            gy (Solution) :
            vko`fÙk vfu;fer gksus osQ dkj.k cgqyd oxZ dk fu/kZj.k lewgu jhfr }kjk fd;k tk,xkA
























                                             LOVELY PROFESSIONAL UNIVERSITY                                       69
   70   71   72   73   74   75   76   77   78   79   80