Page 79 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 79

bdkbZμ5 % ekè;] ekfè;dk rFkk cgqyd osQ vuqiz;ksx




            5. Js.kh ;k oxkZUrjksa dk vojksgh Øe (Descending Order of the series)μ;fn Js.kh vkjksgh osQ LFkku ij  uksV
            vojksgh Øe esa nh xbZ gS vFkkZr~ Åij ls uhps dh vksj ?kVrh gqbZ gS rks ge lw=k dk nks izdkj ls iz;ksx dj ldrs
            gSaμ
             (a)  lkekU; lw=k dk iz;ksxμlkekU; lw=k dks iz;ksx djrs le; f  dk eku cgqyd oxZ ls fupys oxZ dh
                                                              0
                  vko`fÙk gksxh ,oa f  cgqyd oxZ ls mPprj oxZ dh vko`fÙk ekuh tk,xhA
                               2
             (b)  la'kksf/r lw=k dk iz;ksxμvojksgh oxkZUrj esa lkekU; lw=k esa FkksM+k ifjorZu djrs gSaA blesa (l  +) osQ
                                                                                      1
                  LFkku ij (l  –) dk iz;ksx djrs gSa vFkkZr~
                          2
                                 vkjksgh oxkZUrj              vojksgh oxkZUrj
                                    f −  f                f −  f
                          Z = l +  f 2  1  −  1  f −  0  0  f 2  × i Z = l −  f 2  1  1 −  f −  0  0  f 2  ×  i
                                                    2
                              1
            6. tc eè; ewY; fn;s x;s gksa (When mid-values are given)μdHkh&dHkh oxkZUrjksa osQ LFkku ij muosQ eè;
            ewY; fn;s gksrs gSa D;ksafd v[kf.Mr Js.kh esa cgqyd Kkr djus osQ fy, Åijh ,oa fupyh nksuksa lhekvksa dh
            vko';drk gksrh gSA vr% fuEu lw=k }kjk oxkZUrjksa dh Åijh ,oa fupyh lhek,¡ Kkr dj ysrs gSaμ
                                          i                     i
                                 l  = M.V =  2         l  = M.V +  2
                                                       2
                                  1
            7. vleku oxkZUrj okyh Js.kh (Series with unequal class intervals)μ;fn Js.kh esa oxZ foLrkj vleku gS
            rks iz'u gy djus ls iwoZ mls leku dj ysuk pkfg, D;ksafd cgqyd dk lw=k ^leku oxkZUrj* dh ekU;rk ij
            vk/kfjr gSA




                            ;fn fdlh lrr~ vko`fÙk Js.kh dk cgqyd ,oa oqQy vko`fÙk;ksa dk ;ksx Kkr gks rks oqQN
                            vKkr vko`fÙk;ksa dk fu/kZj.k lw=k }kjk fd;k tk ldrk gSA


            mnkgj.k (Illustration) 15: uhps fn;s viw.kZ caVu esa vKkr vko`fÙk dk eku Kkr dhft, ;fn bldk cgqyd
            35 gSμ
               oxZ vUrjky        0—10    10—20    20—30   30—40   40—50    50—60   60—70


               vko`fÙk             10      12      14       20      —        12      10
            gy (Solution): Z = 35, vr% cgqyd oxZ 30—40 gS vkSj vKkr vko`fÙk mlosQ ckn okys oxZ dh vFkkZr~ f 2
            gSA
                      Z = 35, l  = 30, f  = 14, f  = 20, i = 10, f  = ?
                                                    2
                                        1
                            1
                                  0
                                f −  f               20 −  14
                                          i
                      Z= l +    1   0    ×=  30 +               ×  10
                          1
                              f 2  1  −  f −  0  f 2  2 ×  20 −  14 −  f 2
                              6 ×  10                 60
                     35 = 30 +          ;k  35 – 30 =        ;k  5(26 – f ) = 60
                              26 − f 2              26 − f 2          2
                    130 – 5f  = 60      ;k        5f  = 130 – 60 = 70
                                                  2
                          2
                         70
               ∴      f =   5   = 14
                      2
            vr% caVu dh vKkr vko`fÙk 14 gksxhA
                                             LOVELY PROFESSIONAL UNIVERSITY                                       73
   74   75   76   77   78   79   80   81   82   83   84