Page 148 - DEDU504_EDUCATIONAL_MEASUREMENT_AND_EVALUATION_HINDI
P. 148

'kSf{kd ekiu rFkk ewY;kadu




                    uksV          (1)   fu"iknu ijh{k.k osQ inksa dk fo'ys"k.k Msoht dh fofèk }kjk
                                        (Item Analysis of Prognostic Test)
                                  (2)   funkukRed fo'ys"k.k osQ inksa dk fo'ys"k.k LVsuys dh fofèk }kjk
                                        (Item Analysis of Dignostic Test)A
                                  in fo'ys"k.k osQ fy, fdlh Hkh fofèk dk iz;ksx djsa] mu lHkh osQ fy;s ;g vko';d gS fd vuqeku ls lgh djus
                                  dh =kqfV dks de fd;k tk, vkSj ;g Kkr fd;k tk, fd fdrus ijh{kkFkhZ okLro esa ml iz'u osQ lgh mÙkj dks
                                  tkurs gSa rHkh dfBukbZ lwpkad vkSj foHksnhdj.k lwpkad dh x.kuk 'kq¼ :i esa dh tk ldrh gSA blosQ fy,
                                  euksoSKkfud us vyx&vyx lw=kksa dks iz;ksx fd;k gSA
                                  vuqeku ls lgh djus esa 'kq¼hdj.k (Correction for Guessing)μvuqeku ls lgh djus osQ volj esa
                                  'kqf¼dj.k osQ fy, euksoSKkfud us dbZ izdkj osQ lw=kkas dk fodkl fd;kA ;gk¡ ts-ih- fxyiQksMZ rFkk gkjLV }kjk
                                  fodflr lw=kksa dk mYys[k fd;k x;k gSμ

                                  (1)   fxyiQksMZ dk lw=k (Guilford’s Formula-Correction for Guessing)A
                                  fxyiQksMZ us ftl lw=k dks fodflr fd;k gS mldk iz;ksx lkèkkj.kr% fd;k tkrk gS] lw=k bl izdkj gSμ
                                                                      W
                                                             S = R –                                         ...(1)
                                                                    (n  − 1)

                                  tcfdμ                      S= okLrfod :i ls lgh mÙkj tkuus okyksa dh la[;k
                                                             R= lgh djus okyksa dh la[;k
                                                            W= xyr djus okyksa dh la[;k

                                                             n = in esa fn, x, fodYiksa dh la[;k
                                  fxyiQksMZ dk ;g lw=k vèkksfyf[kr voèkkj.kkvksa ij vkèkkfjr gSμ
                                    1-  izFke voèkkj.kk ;g gS fd in osQ lHkh fodYi leku :i ls ijh{kk£Fk;ksa dks vkd£"kd djrs gSaA blfy,
                                        okLrfod izkIrkad osQ fy, mudk vkSlr ?kVk nsuk pkfg,A
                                    2-  nwljh voèkkj.kk ;g gS fd lHkh ijh{kkFkhZ iz'uksa osQ mÙkj dks vuqeku ls nsus dk iz;kl djrs gSaA

                                  bl lw=k dks ,d mnkgj.k ls Li"V fd;k x;k gSA ;gk¡ ij ,d cgqfodYi iz'u fn;k x;k gS rFkk mu fodYiksa ij
                                  Nk=kksa osQ mÙkjksa dks vafdr fd;k x;k gSμ

                                             in                       in fo'ys"k.k dk dk;Z
                                        (v) mÙke inksa dk p;u djuk            8
                                         (c) vuqi;qDr inksa dks fujLr djuk    7
                                         (l) inksa dk p;u djuk rFkk fujLr djuk  20
                                         (n) mijksDr lHkh                     15

                                  bl in dks 50 Nk=kksa us ljy fd;k] ftldk lgh mÙkj (n) gS vkSj (v)] (c) rFkk (l) fodYi gSA blesa fxyiQksMZ
                                  dk lw=k iz;ksx djus ijμ R = 15 rFkk W = 35 fodYiksa dh la[;k n = 4 gSA lw=k dk iz;ksx djus ijμ
                                                                      W
                                                             S = R –                                         ...(1)
                                                                    (n  − 1)
                                                                    35
                                                               = 15 –    = 15 – 12 = 3
                                                                     3
                                  bldk vFkZ ;g gqvk fd bl in osQ lgh mÙkjksa dks okLro esa 3 gh Nk=k tkurs gSaA


        142                               LOVELY PROFESSIONAL UNIVERSITY
   143   144   145   146   147   148   149   150   151   152   153