Page 305 - DMTH401_REAL ANALYSIS
P. 305

Unit 25: Mean Value Theorem




                                                                                                Notes
                                    1            1   1      2    1         1
                                                                   x
                                                       x
                                       x
                                                                 ò
                                                   -
                                                                        e
                                    ò  x e dx =  x e x  1 ò  e dx =   and  e dx = -  .
                                    - 1          -  - 1     e    - 1       e
                                          2    æ  1ö         2       2      2
                                           =  ç  e - ÷   i.e.,  =  2  =  2  =
                                          e    è  e ø      e -  1  (2.7) -  1  6.29
                                                      1
                             1
                                            -
          g.l.b. {f(x) 1 £  x £  1} = -  and  l.u.b. {f(x) 1 £  x £  1} =  and,  so,    [ 1,1].   First Mean Value
                                                                   -
                   -
          Theorem is verified.
          Verification of Second Mean Value Theorem
          As shown above, f and g are integrable in [–1, 1]. Also g is monotonically increasing in [-1, 1].
          By second mean value theorem there is a points c [–1, 1] such that
                                 1                c          1
                                                             ò
                                                  ò
                                 ò  f(x) g(x) dx =  g( 1) f(x) dx g(1) f(x) dx
                                               -
                                                         +
                                 - 1              - 1
                                    1                 1
                                       x
                                   ò  x e dx =  'I' x dx e x dx
                                                   +
                                                      ò
                                    - 1               c
                                                      2
                                        æ
                                    2  1 c 2  1ö  æ  1  c ö
                                    -  ç  -  ÷  +  e ç  -  ÷ .
                                        è
                                    e  e 2   2ø  è  2  2 ø
                             2
                            e -  5  2.29      2 29
                          2
          Therefore      c =     =     i.e. c = ±   [ 1,1]
                                                    -
                             2
                             e - 1  6.29      6 29
          Thus second mean value theorem is verified.
          Now we show the use of mean value theorems to prove some inequalities.
                 Example: By applying the first mean value theorem of Integral calculus, prove that
                                 1/2         1            p    1
                            p /6 £  ò  ×              dx £         2
                                                   2
                                                 2
                                            2
                                              -
                                         -
                                  0   é ë (1 x) (1 k x )ù û  6 (1 -  1 4 k )
                                                       1             1      é  1 ù
          Solution: In the first mean value theorem, take  f(x) =  , g(x) =  , x  ê 0,  ú . Being
                                                           2
                                                         2
                                                                     -
                                                    (1 k x )        1 x 2   ë  2û
                                                      -
                                                é  1 ù
          continuous functions, f and g are integrable in  0,  ú .
                                                ê
                                                ë  2 û
          By the first mean value theorem, there is a number    [m,M]  such that
                               1                     1
                               2        1            2  dx
                               ò      2     2  2  dx =  ò  2  =  p / ,
                                                                 d
                                                        -
                                    -
                                         -
                               0  é ë (1 x )(1 k x )ù û  0  1 x
                        {         1 }           ì         1ü                      1
                               x
          where in = g.l.b.  f(x) 0 £ £  2   and  M =  l.u.b. f(x) 0 £  x £  2 þ . ý  Now m = 1 and  M =  2  .
                                                í
                                                î
                                                                                 1 -  k
                                                                                    4
                                           LOVELY PROFESSIONAL UNIVERSITY                                   299
   300   301   302   303   304   305   306   307   308   309   310